1. Trang chủ
  2. » Tất cả

Đề ôn toán thptqg (765)

13 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn toán thptqg
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Định dạng
Số trang 13
Dung lượng 156,7 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [12220d 2mh202047] Xét các số thực dương a, b, x, y thỏa m[.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 10 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?

2; 3

!

"

2;5 2

!

Câu 2. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?

A log2a= − loga2 B log2a= loga2 C log2a= 1

log2a. D log2a= 1

loga2.

Câu 3. [1] Biết log6 √a= 2 thì log6abằng

Câu 4. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

3

a3√ 5

a3√ 5

a3√ 5

12 .

Câu 5. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là

A. a

3√

6

3√

3√ 15

a3

√ 5

3 .

Câu 6. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:

Câu 7. Hàm số y= x2− 3x+ 3

x −2 đạt cực đại tại

Câu 8. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:

Câu 9. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là

Câu 10. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0B0C0D0, biết tạo độ A(−3; 2; −1), C(4; 2; 0), B0(−2; 1; 1), D0(3; 5; 4) Tìm tọa độ đỉnh A0

A A0(−3; 3; 1) B A0(−3; −3; −3) C A0(−3; 3; 3) D A0(−3; −3; 3)

Câu 11. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2

Câu 12. [3-1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm

A m < 1

1

1

1

4.

Câu 13. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n

n2+ 1 Mệnh đề nào sau đây đúng?

2.

Trang 2

Câu 14. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành

A Năm tứ diện đều.

B Năm hình chóp tam giác đều, không có tứ diện đều.

C Bốn tứ diện đều và một hình chóp tam giác đều.

D Một tứ diện đều và bốn hình chóp tam giác đều.

Câu 15. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng

A. 3b+ 2ac

3b+ 2ac

3b+ 3ac

3b+ 3ac

c+ 2 .

Câu 16. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4 Biết rằng tập hợp các điểm M sao cho MA= 3MB là một mặt cầu Khi đó bán kính mặt cầu bằng?

A. 9

3

Câu 17. Khối đa diện đều loại {5; 3} có số đỉnh

Câu 18. Khối đa diện đều loại {4; 3} có số cạnh

Câu 19. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)

Câu 20. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?

Câu 21. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2

f(x3)−√ 6

3x+ 1 Tính

Z 1

0

f(x)dx

Câu 22. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|

Câu 23. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là

A. a

3√

3

a3√3

a3

√ 2

a3

√ 6

48 .

Câu 24. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng

A. a

6

a

√ 6

a

√ 6

√ 6

Câu 25. Tính lim 2n − 3

2n2+ 3n + 1 bằng

Câu 26. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun

vn bằng

Câu 27. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :

x= t

y= −1

z= −t

và hai mặt phẳng (P), (Q) lần lượt có phương trình x+ 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0 Viết phương trình mặt cầu (S ) có tâm I thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q)

Trang 3

A (x+ 3)2+ (y + 1)2+ (z + 3)2= 9

4. B (x+ 3)2+ (y + 1)2+ (z − 3)2= 9

4.

C (x − 3)2+ (y − 1)2+ (z − 3)2= 9

2+ (y + 1)2+ (z + 3)2= 9

4.

Câu 28. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng

7

2.

Câu 29. [2-c] Giá trị nhỏ nhất của hàm số y = x2

ln x trên đoạn [e−1; e] là

1

e.

Câu 30. [1232h] Trong không gian Oxyz, cho đường thẳng d :

x= 1 + 3t

y= 1 + 4t

z= 1

Gọi∆ là đường thẳng đi qua

điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2) Đường phân giác của góc nhọn tạo bởi d và ∆ có phương trình là

A.

x= 1 + 3t

y= 1 + 4t

z= 1 − 5t

x= −1 + 2t

y= −10 + 11t

z= −6 − 5t

C.

x= 1 + 7t

y= 1 + t

z= 1 + 5t

x= −1 + 2t

y= −10 + 11t

z= 6 − 5t

Câu 31. Tính lim

x→ +∞

x −2

x+ 3

A −2

Câu 32 Trong các khẳng định sau, khẳng định nào sai?

A Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng

F(x)+ C, với C là hằng số

B F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x

C F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x

D.

Z

u0(x)

u(x)dx= log |u(x)| + C

Câu 33 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?

(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]

(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]

(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]

(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]

Câu 34. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 35. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)

Trang 4

Câu 36. [2D1-3] Cho hàm số y= −1

3x

3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R

A (−∞; −2) ∪ (−1; +∞) B −2 < m < −1 C −2 ≤ m ≤ −1 D (−∞; −2] ∪ [−1;+∞)

Câu 37. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là

A. a

3√

3

a3

a3√ 3

3√ 3

Câu 38. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là

A. a

3√

3

a3√6

a3√3

2a3√6

9 .

Câu 39. [2] Phương trình logx4 log2 5 − 12x

12x − 8

!

= 2 có bao nhiêu nghiệm thực?

Câu 40. Giá trị của giới hạn lim2 − n

n+ 1 bằng

Câu 41. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?

Câu 42. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 43. Khối chóp ngũ giác có số cạnh là

Câu 44. [12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Câu 45. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N

và P lần lượt là tâm của các mặt bên ABB0A0, ACC0

A0, BCC0

B0 Thể tích khối đa diện lồi có các đỉnh

A, B, C, M, N, P bằng

A. 14

3

√ 3

3 .

Câu 46. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm

đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)

Câu 47. [3-1214d] Cho hàm số y = x −1

x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng

A.

Câu 48. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi

Câu 49. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1

x

! Tính tổng S = f0

(1)+ f0

(2)+ · · · + f0

(2017)

4035

2016

2017.

Trang 5

Câu 50. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 8

A m = ±√3 B m= ±3 C m= ±√2 D m= ±1

Câu 51. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp

Câu 52. Cho

Z 1

0

xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b

A. 1

1

Câu 53. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

3

a3√ 3

3√

3√ 2

2 .

Câu 54. Tính lim

x→ +∞

x+ 1 4x+ 3 bằng

1

Câu 55. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3

a2bằng

Câu 56. Tập các số x thỏa mãn 2

3

!4x

≤ 3 2

!2−x là

5

#

3

#

"

−2

3;+∞

! D. " 2

5;+∞

!

Câu 57. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là

A Phần thực là −1, phần ảo là −4 B Phần thực là −1, phần ảo là 4.

Câu 58. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2

Câu 59. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng

d: x+ 1

2 = y −5

2 = z

−1 Tìm véctơ chỉ phương ~u của đường thẳng∆ đi qua M, vuông góc với đường thẳng

dđồng thời cách A một khoảng bé nhất

A ~u = (3; 4; −4) B ~u= (2; 2; −1) C ~u= (1; 0; 2) D ~u= (2; 1; 6)

Câu 60. Khối đa diện đều loại {3; 3} có số mặt

Câu 61. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2

trên đoạn [1; 2] là

1

e3

Câu 62. Khối đa diện đều loại {4; 3} có số đỉnh

Câu 63. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng

2√a2+ b2 B. √ ab

a2+ b2 C. √ 1

a2+ b2 D. ab

a2+ b2

Trang 6

Câu 64. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước

đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra

Câu 65. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng

Câu 66. Tính lim

x→5

x2− 12x+ 35

25 − 5x

5.

Câu 67. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là

A. a

3√

3

a3√ 3

a3

a3√ 3

4 .

Câu 68. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?

Câu 69. Khối đa diện loại {4; 3} có tên gọi là gì?

A Khối tứ diện đều B Khối lập phương C Khối bát diện đều D Khối 12 mặt đều.

Câu 70. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a

2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng

A. a

2a

a

a

√ 2

3 .

Câu 71. Khối đa diện đều loại {5; 3} có số cạnh

Câu 72. Khối đa diện đều loại {3; 4} có số cạnh

Câu 73. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng

√ 6

2 .

Câu 74. [1] Giá trị của biểu thức 9log3 12bằng

Câu 75. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0

là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng

vi khuẩn đạt 100.000 con?

Câu 76. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1

3|x−1| = 3m − 2 có nghiệm duy nhất?

Câu 77. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?

Trang 7

Câu 78. [1] Đạo hàm của làm số y = log x là

0 = 1

0 = 1

xln 10. D y

0 = ln 10

x .

Câu 79. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC

Câu 80. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là

sai?

(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)

(II) Nếu f liên tục trên D thì f có nguyên hàm trên D

(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số

sai

C Câu (I) sai D Câu (III) sai.

Câu 81. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu

A lim

x→a + f(x)= lim

x→a − f(x)= +∞ B f (x) có giới hạn hữu hạn khi x → a.

C lim

x→a + f(x)= lim

x→af(x)= f (a)

Câu 82. [4-1212d] Cho hai hàm số y = x −2

x −1 + x −1

x+ 1 +

x+ 1

x+ 2 và y = |x + 1| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 83. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?

A 3 đỉnh, 3 cạnh, 3 mặt B 4 đỉnh, 6 cạnh, 4 mặt C 6 đỉnh, 6 cạnh, 4 mặt D 4 đỉnh, 8 cạnh, 4 mặt.

Câu 84 Phát biểu nào trong các phát biểu sau là đúng?

A Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó

B Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó

C Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0

D Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó

Câu 85. Hàm số nào sau đây không có cực trị

A y = x +1

x. B y= x4− 2x+ 1 C y= x3− 3x D y= x −2

2x+ 1.

Câu 86. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)

Câu 87. Khối đa diện đều loại {3; 5} có số cạnh

Câu 88. [1] Tập xác định của hàm số y= 4x2+x−2là

A. D = (−2; 1) B. D = R C. D = [2; 1] D. D = R \ {1; 2}

Câu 89. [1] Tính lim 1 − n

2

2n2+ 1 bằng?

A. 1

1

1

3.

Câu 90. Khối đa diện loại {3; 5} có tên gọi là gì?

A Khối tứ diện đều B Khối 12 mặt đều C Khối 20 mặt đều D Khối bát diện đều.

Trang 8

Câu 91 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?

A. a

α

aβ = aα B aα+β= aα.aβ

C aαβ = (aα

D aαbα = (ab)α

Câu 92. Tính lim

x→−∞

x+ 1 6x − 2 bằng

1

1

6.

Câu 93. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị

Câu 94. Tìm giá trị nhỏ nhất của hàm số y= (x2

− 2x+ 3)2

− 7

Câu 95. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?

Câu 96. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:

Câu 97. [2] Tổng các nghiệm của phương trình 3x2−3x+8 = 92x−1là

Câu 98. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦

Đường chéo

BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là

A. 2a

3√

6

a3

√ 6

3√

3√ 6

3 .

Câu 99. Giá trị lớn nhất của hàm số y= 2mx+ 1

m − x trên đoạn [2; 3] là −

1

3 khi m nhận giá trị bằng

Câu 100. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0

(e)= 2m + 1

A m = 1 − 2e

4e+ 2. B m=

1+ 2e

4 − 2e. C m= 1 − 2e

4 − 2e. D m= 1+ 2e

4e+ 2.

Câu 101. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)

Câu 102. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π

3, x = π Tính giá trị của biểu thức T = a + b√3

Câu 103. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số đỉnh của khối chóp bằng 2n+ 1

B Số cạnh của khối chóp bằng 2n.

C Số mặt của khối chóp bằng số cạnh của khối chóp.

D Số mặt của khối chóp bằng 2n+1.

Câu 104. [1] Giá trị của biểu thức log √31

10 bằng

A. 1

1

3.

Trang 9

Câu 105 Trong các khẳng định sau, khẳng định nào sai?

A F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x

B Cả ba đáp án trên.

C Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

D F(x)= x là một nguyên hàm của hàm số f (x) = 2√x

Câu 106. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦

và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt

và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là

A. a

2√

5

a2

√ 2

11a2

a2√7

8 .

Câu 107. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết

S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)

A. a

2a

8a

5a

9 .

Câu 108. [1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

Câu 109. [2] Tích tất cả các nghiệm của phương trình (1+ log2x) log4(2x)= 2 bằng

A. 1

1

1

2.

Câu 110. [2] Phương trình log4(x+ 1)2+ 2 = log√

2

4 − x+ log8(4+ x)3có tất cả bao nhiêu nghiệm?

Câu 111. Khối đa diện đều loại {3; 5} có số mặt

Câu 112. [3-1133d] Tính lim1

2+ 22+ · · · + n2

n3

1

Câu 113. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi

G la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0

B0C0D0

A k = 1

18.

Câu 114. [12210d] Xét các số thực dương x, y thỏa mãn log31 − xy

x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất Pmincủa P= x + y

A Pmin= 9

11 − 19

9 . B Pmin = 9

11+ 19

9 . C Pmin = 18

11 − 29

21 D Pmin= 2

11 − 3

Câu 115. Tính lim n −1

n2+ 2

Câu 116. [3-1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

Câu 117. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?

A lim

x→a + f(x)= f (a) và lim

x→b + f(x)= f (b) B lim

x→a − f(x)= f (a) và lim

x→b − f(x)= f (b)

C lim

x→a − f(x)= f (a) và lim

x→b + f(x)= f (b) D lim

x→a + f(x)= f (a) và lim

x→b − f(x)= f (b)

Trang 10

Câu 118. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng

A. a

2

√ 2

√ 2

Câu 119. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|

Câu 120. [3-1122d] Trong kỳ thi THPTQG có môn thi bắt buộc là môn Toán Môn thi này dưới hình thức trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng Mỗi câu trả lời đúng được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm Bạn An học kém môn Toán nên quyết định chọn ngẫu nhiên hết 50 câu trả lời Xác suất để bạn An đạt 4 điểm môn Toán là

A. C

10

50.(3)40

20

50.(3)30

20

50.(3)20

40

50.(3)10

450

Câu 121. Hàm số y= x3− 3x2+ 4 đồng biến trên:

Câu 122. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là

Câu 123. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:

A.

3

3

√ 3

√ 3

12.

Câu 124. Xét hai câu sau

(I)

Z

( f (x)+ g(x))dx = Z f(x)dx+Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)

(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)

Trong hai câu trên

A Cả hai câu trên đúng B Chỉ có (I) đúng C Cả hai câu trên sai D Chỉ có (II) đúng.

Câu 125. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 126. Tính giới hạn lim

x→2

x2− 5x+ 6

x −2

Câu 127. Bát diện đều thuộc loại

Câu 128. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) = 1π

!x 3 −3mx 2 +m

nghịch biến trên khoảng (−∞;+∞)

Câu 129. Cho hình chóp S ABC có dBAC = 90◦,ABCd = 30◦

; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là

A 2a2

3√ 3

a3

√ 2

a3

√ 3

24 .

Câu 130. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và √3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2

√ 3

3 Thể tích khối lăng trụ đã cho bằng

Ngày đăng: 02/04/2023, 19:56

w