TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI TOÁN SỬ THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Một khối lăng trụ tam giác có thể chia ít nhất thành bao nh[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 10 trang)
TRẮC NGHIỆM ÔN THI TOÁN SỬ THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng nhau?
Câu 2. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab
A. 9
23
13
5
16.
Câu 3. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
Câu 4. Giá trị của giới hạn lim2 − n
n+ 1 bằng
Câu 5 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?
A aαbα= (ab)α B. a
α
aβ = aα C aα+β = aα.aβ D aαβ = (aα)β
Câu 6. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó
A Tăng lên (n − 1) lần B Giảm đi n lần C Tăng lên n lần D Không thay đổi.
Câu 7. Tìm m để hàm số y= mx −4
x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 8. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0A0, ACC0
A0, BCC0
B0 Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
A. 20
√
3
14√3
√
Câu 9. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 6 cạnh, 4 mặt B 4 đỉnh, 6 cạnh, 4 mặt C 3 đỉnh, 3 cạnh, 3 mặt D 4 đỉnh, 8 cạnh, 4 mặt.
Câu 10. Khối đa diện đều loại {3; 3} có số đỉnh
Câu 11. [1] Tập xác định của hàm số y= 4x2+x−2là
A. D = [2; 1] B. D = R C. D = (−2; 1) D. D = R \ {1; 2}
Câu 12. Khối đa diện loại {3; 3} có tên gọi là gì?
A Khối lập phương B Khối tứ diện đều C Khối bát diện đều D Khối 12 mặt đều.
Câu 13. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin2x+ 2cos 2 x
lần lượt là
A 2√2 và 3 B 2 và 2√2 C 2 và 3 D. √2 và 3
Câu 14. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:
A Tăng gấp 18 lần B Tăng gấp 27 lần C Tăng gấp 3 lần D Tăng gấp 9 lần.
Câu 15. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019
Trang 2Câu 16. Khối đa diện đều loại {3; 4} có số cạnh
Câu 17. Tính lim 2n − 3
2n2+ 3n + 1 bằng
Câu 18. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực
x ≥1
Câu 19. Tính limcos n+ sin n
n2+ 1
Câu 20. [2] Tổng các nghiệm của phương trình 3x−1.2x2 = 8.4x−2là
Câu 21. Tính lim
x→ +∞
x+ 1 4x+ 3 bằng
A. 1
1
4.
Câu 22. Dãy số nào có giới hạn bằng 0?
A un= n3− 3n
n+ 1 . B un = −2
3
!n C un = n2
− 4n D un = 6
5
!n
Câu 23. [1] Hàm số nào đồng biến trên khoảng (0;+∞)?
A y = logaxtrong đó a= √3 − 2 B y = log√
2x
4 x
Câu 24. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
Câu 25. Tính lim
x→2
x+ 2
x bằng?
Câu 26. Khối đa diện đều loại {3; 5} có số mặt
Câu 27 [1233d-2] Mệnh đề nào sau đây sai?
A.
Z
[ f (x) − g(x)]dx=Z f(x)dx −
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
B.
Z
f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R
C.
Z
k f(x)dx= k
Z
f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R
D.
Z
[ f (x)+ g(x)]dx =
Z
f(x)dx+
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
Câu 28. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
Câu 29. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là
3√ 3
Trang 3Câu 30. Khối đa diện loại {3; 4} có tên gọi là gì?
A Khối bát diện đều B Khối lập phương C Khối 12 mặt đều D Khối tứ diện đều.
Câu 31. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là
A. a
3
a3
a3
3
Câu 32. Thể tích của khối lập phương có cạnh bằng a
√ 2
A V = a3√
3√ 2
3 .
Câu 33. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2)?
Câu 34. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy
x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất
Pmincủa P= x + y
A Pmin= 9
√
11 − 19
9 . B Pmin = 18
√
11 − 29
21 C Pmin = 9
√
11+ 19
9 . D Pmin= 2
√
11 − 3
Câu 35. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦
, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là
A. a
3√
2
a3√ 3
a3√ 2
3√ 3
Câu 36. Giả sử ta có lim
x→ +∞f(x)= a và lim
x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?
A lim
x→ +∞[ f (x)g(x)]= ab B lim
x→ +∞
f(x) g(x) = a
b.
C lim
x→ +∞[ f (x)+ g(x)] = a + b D lim
x→ +∞[ f (x) − g(x)]= a − b
Câu 37. Khối đa diện đều loại {3; 3} có số mặt
Câu 38. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau
(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)
(II) kF(x) là một nguyên hàm của k f (x)
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)
Các mệnh đề đúng là
Câu 39. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n
n2+ 1 Mệnh đề nào sau đây đúng?
2.
C Dãy số unkhông có giới hạn khi n →+∞ D lim un= 0
Câu 40. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R
Câu 41. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:
Trang 4Câu 42. [1] Giá trị của biểu thức log √31
10 bằng
A −1
1
Câu 43. Tìm giới hạn lim2n+ 1
n+ 1
Câu 44. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]
Câu 45. [2] Tổng các nghiệm của phương trình 3x2−3x+8 = 92x−1là
Câu 46. Giá trị lớn nhất của hàm số y= 2mx+ 1
m − x trên đoạn [2; 3] là −
1
3 khi m nhận giá trị bằng
Câu 47. [1-c] Giá trị biểu thức log236 − log2144 bằng
Câu 48. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?
A Một khối chóp tam giác, một khối chóp ngữ giác.
B Hai khối chóp tứ giác.
C Hai khối chóp tam giác.
D Một khối chóp tam giác, một khối chóp tứ giác.
Câu 49. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?
2; 3
!
"
2;5 2
!
Câu 50. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0
B0C0D0
A k = 1
9.
Câu 51. [3-1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
Câu 52. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a
2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng
A. a
a
a√2
2a
3 .
Câu 53. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0
(1) bằng
1
2.
Câu 54. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0?
Câu 55. Hàm số y= x + 1
x có giá trị cực đại là
Trang 5Câu 56. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)
Câu 57. [3-1122d] Trong kỳ thi THPTQG có môn thi bắt buộc là môn Toán Môn thi này dưới hình thức trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng Mỗi câu trả lời đúng được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm Bạn An học kém môn Toán nên quyết định chọn ngẫu nhiên hết 50 câu trả lời Xác suất để bạn An đạt 4 điểm môn Toán là
A. C
40
50.(3)10
10
50.(3)40
20
50.(3)20
20
50.(3)30
450
Câu 58. Hàm số y= x2− 3x+ 3
x −2 đạt cực đại tại
Câu 59. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 60. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 8
A m = ±3 B m= ±√2 C m= ±√3 D m= ±1
Câu 61. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2
n+ 2 + a2− 4a
!
= 0 Tổng các phần tử của S bằng
Câu 62. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|
Câu 63 Trong các khẳng định sau, khẳng định nào sai?
A.
Z
1
xdx= ln |x| + C, C là hằng số B.
Z
xαdx= xα+1
α + 1+ C, C là hằng số.
C.
Z
dx = x + C, C là hằng số D.
Z 0dx = C, C là hằng số
Câu 64. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)
Câu 65. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là
A. a
3√
3
3√
3√ 3
a3√3
3 .
Câu 66. Tính lim
x→−∞
x+ 1 6x − 2 bằng
1
1
2.
Câu 67. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng
A. a
√
57
a
√ 57
2a√57
√ 57
Câu 68. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị
Trang 6Câu 69. Giá trị cực đại của hàm số y = x3
− 3x+ 4 là
Câu 70. [2] Tổng các nghiệm của phương trình 9x− 12.3x+ 27 = 0 là
Câu 71. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x
A. 11
9
Câu 72. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
A 3
√
√
Câu 73. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0
B0C0 là
A. a
3
a3√3
a3√3
3
Câu 74. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i
5
Câu 75. Thể tích của tứ diện đều cạnh bằng a
A. a
3√
2
a3√2
a3√2
a3√2
4 .
Câu 76. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
Câu 77. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?
A Hàm số nghịch biến trên khoảng (−2; 1).
B Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)
C Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)
D Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)
Câu 78. [3-1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 4 ln 2x
2x3ln 10 . B y
0 = 1 2x3ln 10. C y
0 = 1 − 2 ln 2x
x3ln 10 . D y
0 = 1 − 2 log 2x
x3
Câu 79 Phát biểu nào sau đây là sai?
A lim √1
C lim 1
nk = 0 với k > 1 D lim qn= 1 với |q| > 1
Câu 80. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng
A. a
√
57
a√57
2a√57
√ 57
Câu 81. [2D1-3] Tìm giá trị của tham số m để hàm số y= −1
3x
3− mx2− (m+ 6)x + 1 luôn đồng biến trên một đoạn có độ dài bằng
√ 24
A m = −3, m = 4 B m= −3 C −3 ≤ m ≤ 4 D m= 4
Câu 82. Nhị thập diện đều (20 mặt đều) thuộc loại
Trang 7Câu 83 Các khẳng định nào sau đây là sai?
A.
Z
k f(x)dx= k
Z
f(x)dx, k là hằng số B.
Z
f(x)dx= F(x) + C ⇒
Z
f(t)dt= F(t) + C
C.
Z
f(x)dx
!0
Z
f(x)dx= F(x)+C ⇒
Z
f(u)dx = F(u)+C
Câu 84. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =
0 có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 85. Khối đa diện loại {4; 3} có tên gọi là gì?
A Khối bát diện đều B Khối lập phương C Khối 12 mặt đều D Khối tứ diện đều.
Câu 86. Khối đa diện đều loại {5; 3} có số mặt
Câu 87. Khối đa diện đều loại {3; 5} có số đỉnh
Câu 88. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là
A. 5a
3√
3
2a3√ 3
a3
√ 3
4a3√ 3
3 .
Câu 89. Khối đa diện đều loại {5; 3} có số cạnh
Câu 90. Dãy số nào sau đây có giới hạn là 0?
A. 1
3
!n
3
!n
3
!n
e
!n
Câu 91. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng
√
a2+ b2
√
a2+ b2+ c2 B. abc
√
b2+ c2
√
a2+ b2+ c2 C. b
√
a2+ c2
√
a2+ b2+ c2 D. a
√
b2+ c2
√
a2+ b2+ c2
Câu 92. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là
Câu 93. Cho hình chóp S ABC có dBAC= 90◦,ABCd = 30◦
; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là
A. a
3√
3
2√
3√ 2
a3
√ 3
12 .
Câu 94. [1] Tính lim 1 − n
2
2n2+ 1 bằng?
A. 1
1
1
3.
Câu 95. [1-c] Giá trị của biểu thức log716
log715 − log71530 bằng
Câu 96 Mệnh đề nào sau đây sai?
A F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)
B.
Z
f(x)dx
!0
= f (x)
Trang 8C Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì f(x)dx = F(x) + C.
D Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Câu 97. Tính lim
x→1
x3− 1
x −1
Câu 98. [4-1212d] Cho hai hàm số y = x −2
x −1 + x −1
x+ 1 +
x+ 1
x+ 2 và y = |x + 1| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 99. Gọi F(x) là một nguyên hàm của hàm y= ln x
x
p
ln2x+ 1 mà F(1) = 1
3 Giá trị của F
2(e) là:
A. 1
8
8
1
9.
Câu 100. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng
A a
√
√ 3
a√3
a√3
2 .
Câu 101. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
Câu 102. Tính lim
x→5
x2− 12x+ 35
25 − 5x
5.
Câu 103. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 5 đỉnh, 9 cạnh, 6 mặt B 6 đỉnh, 6 cạnh, 6 mặt C 6 đỉnh, 9 cạnh, 5 mặt D 6 đỉnh, 9 cạnh, 6 mặt.
Câu 104. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
Câu 105. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là
A. a
3√
3
3√ 3
a3
3 .
Câu 106. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s) Tính quãng đường chất điểm đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)
Câu 107. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là
A. a
3√
3
a3√ 2
a3√ 6
a3√ 3
48 .
Câu 108. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương
(II) lim qn= +∞ nếu |q| < 1
Trang 9(III) lim qn= +∞ nếu |q| > 1.
Câu 109. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)
A. 2a
8a
a
5a
9 .
Câu 110. [1-c] Giá trị biểu thức log2240
log3,752 −
log215 log602 + log21 bằng
Câu 111. Giá trị của lim
x→1(3x2− 2x+ 1)
Câu 112. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = −ey+ 1 B xy0 = ey+ 1 C xy0 = ey
− 1
Câu 113. Thập nhị diện đều (12 mặt đều) thuộc loại
Câu 114. Tính lim 5
n+ 3
Câu 115. Tứ diện đều thuộc loại
Câu 116. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?
A lim
x→a + f(x)= f (a) và lim
x→b + f(x)= f (b) B lim
x→a − f(x)= f (a) và lim
x→b − f(x)= f (b)
C lim
x→a − f(x)= f (a) và lim
x→b + f(x)= f (b) D lim
x→a + f(x)= f (a) và lim
x→b − f(x)= f (b)
Câu 117. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|
√
√
Câu 118. Khối đa diện đều loại {4; 3} có số đỉnh
Câu 119. [2-c] Giá trị lớn nhất của hàm số f (x)= ex 3 −3x +3trên đoạn [0; 2] là
Câu 120. [1] Tập nghiệm của phương trình log2(x2− 6x+ 7) = log2(x − 3) là
Câu 121. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 122. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng
A. a
√
6
√
√ 6
a√6
2 .
Câu 123. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là
Câu 124. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
Trang 10Câu 125. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi
Câu 126. Dãy số nào sau đây có giới hạn là 0?
A un= n2+ n + 1
(n+ 1)2 B un = n2− 3n
n2 C un = 1 − 2n
5n+ n2 D un = n2− 2
5n − 3n2
Câu 127. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng
Câu 128. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng
A. a
√
6
a√6
a√3
a√6
3 .
Câu 129. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng
Câu 130. Dãy số nào sau đây có giới hạn khác 0?
A. sin n
n+ 1
1
√
1
n.
HẾT