Bernoulli equationConservation of Energy for Inviscid Flows Acylindrical particle of inviscid fluid , A streamline with coordinates shown Newton’s 2nd law: external forces: pressure, and
Trang 1Ch˜Ïng 3: Îng l¸c hÂc l˜u chßt
Ph¶n 2: Ph˜Ïng trình n´ng l˜Òng cho dòng l˛ t˜ng và dòng th¸c
Bài gi£ng cıa TS Nguyπn QuËc fi nguyenquocy@hcmut.edu.vn
Ngày 1 tháng 10 n´m 2015
Trang 2NÎi dung c¶n n≠m
Ph˜Ïng trình n´ng l˜Òng cho dòng l˛ t˜ng
Ph˜Ïng trình n´ng l˜Òng cho dòng th¸c
Các ˘ng dˆng cÏ b£n cıa PT n´ng l˜Òng: bÏm, turbine, o v™n tËc, l˜u l˜Òng
Trang 3Bernoulli equation
Conservation of Energy for Inviscid Flows
Acylindrical particle of inviscid fluid ,
A streamline with coordinates shown
Newton’s 2nd law:
external
forces: pressure, and weight
m dv
p
sds mg cos ✓
Trang 4dA ds d–V
v v s, t
dv dt
v
tdt
v s
ds dt
v
tdt v
v s for steady flows : dv
dt v
dv
ds,
p s
dp ds cos ✓ dz ds
mv dv ds
dp
dsd–V mg
dz ds
mv dv dp d–V mg dz Integrate along the streamline
Trang 52
2 dp d–V mgz const.
for incompressible fluids , d–V const.:
mV
2
2 pd–V mgz const.
per unit area /volume
⇢gz p ⇢V2
2 const.
⇢gz : hydrostatic pressure
p : static pressure
⇢V2
2 : dynamic pressure
per unit weight
⇢g
V2 2g H const. p
⇢g : pressure head
V2 2g : velocity head
z : potential head
H : total head
Trang 6Be reminded: of a fluid particle
⇢
V2
or along a streamline, from Point 1 to Point 2:
z1 p1
⇢
V2 1
p2
⇢
V2 2
2g
Bernoulli equation only VALID for:
Inviscid fluids
Steady flows
Along streamlines
Incompressible flows
Trang 7Bernoulli equation
Across the streamline
˜Ìng dòng thØng: R z p const.: qui lu™t thu tænh
Ÿng dˆng: »ng o áp
Trang 8Bernoulli equation
Example of stagnation points
Stagnation point
(a)
Stagnation streamline
Stagnation point (b)
V2 = 0 V1= V0
(1) (2)
z1 p1
⇢g
V12 2g z2
p2
⇢g
V22 2g
z1 z2, V2 0, p2 p1 ⇢V1 2
(1)
Áp sußt d¯ng = Áp sußt tænh + Áp sußt Îng
Trang 9Bernoulli equation
Exchange of kinetic, Potential, and Pressure Energy
A2 A1
v2 v1
p2 p1
Trang 10Bernoulli effect
Trang 11Application of Bernoulli Equation
z1 p1 V12
2g z2
p2 V22 2g Assume z1 z2: horizontally
v2 v1
2g
p1 p2
v1 v2A2 A1, p1 p2 H
Q CA2v2 C A2
1 A2 A1 2
2gH
C :(emperical) coe due to energy loss
Trang 12Application of Bernoulli Equation
Pitot’s 1st exp
V1 = 100 mi/hr (2) (1) Pitot-static tube
pA
⇢g
vA2
2g
pB
⇢g
vA 2gpB pA
⇢g 2gpB pC
some loss: vA Cv 2gH
Trang 13Application of Bernoulli Equation
Flow through a small hole
zA patm V2
A
2g zB
patm V2
B
2g
VA 0 for large tank,
zA zB H
due to some loss VB Cv 2gH due to contraction of the jet at exit:
ac Cc a actual flow rate
Q CcaCvVB CcCva 2gH
Q Ca 2gH
C: Coe of discharge
Trang 14Application of Bernoulli Equation
Flow through a small hole
Coe of contraction
d h
d j
C C = 0.61
C C = 1.0
C C = A j /A h = (d j /d h) 2
Trang 15Application of Bernoulli Equation
Measuring water flow rate by WEIRs
Consider a minute area b.dz as an orifice:
dQ C b.dz 2gz
3Cb 2g H
3 2
Trang 16Energy Equation
Bernoulli equation to be modified for real incompressible fluid:
introducing a term to account energy loss, hloss: energy loss by a unit weight of fluid, due to:
viscous friction,
turbulent shear stress,
local loss at valves, fittings,
correcting velocity headfor real velocity distribution on a wetted area flows throughhydraulic machines: PUMPS, TURBINES
Trang 17Kinetic energy correction factor ↵
Nonuniform distribution:
m ⇢dA v t
2mv
2 A
1
2⇢ v
↵1
2⇢V
V : averaged velocity at the
section, hence:
A A
v V
3
dA
KE
V2
2g
Trang 18Modified energy equation
for flows through PUMPS
z1 p1
↵1V12 2g Hb z2
p2
↵2V22 2g hloss
Hp is the energy supplied to a unit weight of fluid, orPump head
Công sußt bÏm Nb QHb
Công sußt Îng cÏ N c Nb
⌘b
⌘b: Hiªu sußt bÏm (%)
Pump Tee Valve Outlet Elbow
Inlet
Pipe
Trang 19Modified energy equation
for flows through TURBINES
Ht is the energy taken from a unit weight of fluid, orTurbine head
z1 p1
↵1V12 2g Ht z2
p2
↵2V22 2g hloss
Công sußt turbine Nt QHt
Công sußt Îng cÏ N c Nt⌘t
⌘t: Hiªu sußt turbine (%)