1. Trang chủ
  2. » Tất cả

5E an example of pressure drop calculations by api recommended practice

43 2 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Pressure Drop Calculations API Recommended Practice
Tác giả Dr. Do Quang Khanh
Trường học Well Drilling Engineering
Thể loại Bài tập tốt nghiệp
Định dạng
Số trang 43
Dung lượng 449,28 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Old Lesson 17B 1 1 Well Drilling Engineering Pressure Drop Calculations API Recommended Practice 13D Dr DO QUANG KHANH 2 Contents The API Power Law Model The Rotational Viscometer A detailed Exampl[.]

Trang 1

Well Drilling Engineering

Pressure Drop Calculations

API Recommended Practice 13D

Dr DO QUANG KHANH

Trang 2

Contents

The API Power Law Model

The Rotational Viscometer

A detailed Example - Pump Pressure

 Pressure Drop in the Drillpipe

 Pressure Drop in the Bit Nozzles

 Pressure Drop in the Annulus

Wellbore Pressure Profiles

Trang 3

Power Law Model

Trang 4

Fluid Flow in Pipes and Annuli

Trang 5

Fluid Flow in Pipes and Annuli

or RPM(

),

RATE

SHEAR(

n

1

Trang 6

Rotating

Sleeve

Viscometer

Trang 7

Rotating Sleeve Viscometer

VISCOMETER

RPM

3

100

API RP 13D

Trang 8

API RP 13D, June 1995 for Oil-Well Drilling Fluids

 API RP 13D recommends using only FOUR of

the six usual viscometer readings:

 The 3 and 100 RPM reading are used for

pressure drop calculations in the annulus,

where shear rates are, generally, not very high

 The 300 and 600 RPM reading are used for

pressure drop calculations inside drillpipe,

where shear rates are, generally, quite high

Trang 9

Example: Pressure Drop Calculations

in the wellbore shown on the next page,

using the API method

readings are as follows:

Trang 10

PPUMP = ∆PDP + ∆PDC

+ ∆PBIT NOZZLES + ∆PDC/ANN + ∆PDP/ANN + ∆PHYD

Trang 11

Power - Law Constant (n):

Pressure Drop In Drill Pipe

Fluid Consistency Index (K):

Average Bulk Velocity in Pipe (V p ):

OD = 4.5 in

ID = 3.78 in

L = 11,400 ft

737

0 39

65 log

32

3 R

R log 32

600 p

cm

sec

dyne017

2022

,1

65

*11.5022

,1

R11

8 78

3

280

* 408

0 D

Q 408

0

Trang 12

Effective Viscosity in Pipe (µep ):

Pressure Drop In Drill Pipe

Reynolds Number in Pipe (N Rep ):

ep

n 4

1 n

3 D

V

96 K

0

* 4

1 737

0

* 3 78

3

8

*

96 017

2

* 100

737 0 1

737 0

6 53

5 12

* 00 8

* 78 3

* 928 V

D

928 N

Trang 13

NOTE: NRe > 2,100, so

Friction Factor in Pipe (fp):

Pressure Drop In Drill Pipe OD = 4.5 in

ID = 3.78 in

L = 11,400 ft

So,

b Re

050

93.3737

.0log50

93.3n

log

2690

07

737

0log75

.17

nlog75

1

007126

0616

,6

0759

0N

Trang 14

Friction Pressure Gradient (dP/dL) p :

Pressure Drop In Drill Pipe OD = 4.5 in

ID = 3.78 in

L = 11,400 ft

Friction Pressure Drop in Drill Pipe :

400,

11

*05837

0

LdL

0 78

3

* 81 25

5 12

* 8

* 007126

0 D

81 25

V f dL

Trang 15

Power-Law Constant (n):

Pressure Drop In Drill Collars

Fluid Consistency Index (K):

Average Bulk Velocity inside Drill Collars (Vdc):

OD = 6.5 in

ID = 2.5 in

L = 600 ft

737

0 39

65 log

32

3 R

R log 32

3

600 dc

cm

sec

dyne017

2022

,1

65

*11.5022

,1

R11

.

18 5

2

280

* 408

0 D

Q 408

0

Trang 16

Effective Viscosity in Collars ( µec):

Reynolds Number in Collars (NRec):

OD = 6.5 in

ID = 2.5 in

L = 600 ftPressure Drop In Drill Collars

edc

n 4

1 n

3 D

V

96 K

38737

.0

*4

1737

0

*35

.2

28.18

*

96017

.2

*100

737 0 1

737 0

13 21

38

5 12

* 28 18

* 5 2

* 928 V

D

928 N

Trang 17

93.3737

.0log50

93.3n

log

2690

07

737

0log75

.17

nlog75

1

005840

0 870

, 13

0759

0 N

Trang 18

Friction Pressure Gradient (dP/dL)dc :

Friction Pressure Drop in Drill Collars :

OD = 6.5 in

ID = 2.5 in

L = 600 ftPressure Drop In Drill Collars

ft

psi 3780

0 5

2

* 81 25

5 12

* 28 18

* 005840

0 D

81 25

V f dL

dc

2 dc dc dc

0

LdL

Trang 19

Pressure Drop across Nozzles

11

280

* 5 12

*

156 P

+ +

2 2 N

2 1 N

2

Nozzles

D D

D

Q

156 P

+ +

ρ

=

Trang 21

Power-Law Constant (n):

Fluid Consistency Index (K):

Average Bulk Velocity in DC/HOLE Annulus (Va):

0 3

20 log

657

0 R

R log 657

0

100 dca

cm

sec

dyne336

62

.170

20

*11.52

.170

R11

5K

=

sec

ft 808

.

3 5

6 5

8

280

* 408

0 D

D

Q 408

0

1

2 2

Trang 22

Effective Viscosity in Annulus ( µea):

Reynolds Number in Annulus (NRea):

55 5413

0

* 3

1 5413

0

* 2 5

6 5 8

808

3

* 144 336

6

* 100

5413 0 1

5413 0

1 20

55

5 12

* 808

3

* 5 6 5 8 928 V

D D

928 N

ea

a 1 2

1 n

1 2

a a

ea

n3

1n

2D

D

V

144K

Trang 23

0 600

, 1

24 N

24

f

a Re

psi 05266

0 5

6 5 8 81 25

5 12

* 808

3

* 01500

0 D

D 81 25

V f dL

1 2

2 a a

0

L dL

dP

hole / dc

hole /

Trang 25

Power-Law Constant (n):

Fluid Consistency Index (K):

Average Bulk Velocity in Annulus (V a ):

0 3

20 log

657

0 R

R log 657

0 n

100 dpa

cm

sec

dyne336

62

.170

20

*11.52

.170

R11

5K

=

sec

ft 197

2 5

4 5

8

280

* 408

0 D

D

Q 408

0

1

2 2

Trang 26

Effective Viscosity in Annulus ( µea):

Reynolds Number in Annulus (NRea):

1 n

1 2

a a

ea

n3

1n

2D

D

V

144K

97 5413

0

* 3

1 5413

0

* 2 5

4 5 8

197 2

* 144 336

6

* 100

5413 0 1

5413 0

1 64

97

5 12

* 197

2

* 5 4 5 8 928 V

D D

928 N

ea

a 1 2

Trang 27

0 044

, 1

24 N

24

f

a Re

psi 01343

0 5

4 5 8 81 25

5 12

* 197 2

* 02299

0 D

D 81 25

V f dL

1 2

2 a a a

11

* 01343

0

L dL

dP

hole / dp

hole /

Trang 28

Pressure Drop Calculations

- SUMMARY -

PPUMP = ∆PDP + ∆PDC + ∆PBIT NOZZLES

+ ∆PDC/ANN + ∆PDP/ANN + ∆PHYD

PPUMP = 665 + 227 + 1,026

+ 32 + 153 + 0

PPUMP = 1,918 + 185 = 2,103 psi

Trang 30

2,103 psi P CSG

= 0

BHP = 7,985 psig

Trang 31

2103

Trang 32

Hydrostatic Pressures in the Wellbore

Trang 33

Pressures in the Wellbore

2103

Trang 34

Wellbore Pressure Profile

Trang 35

Pipe Flow - Laminar

In the above example the flow down the drillpipe was turbulent

Under conditions of very high viscosity,

the flow may very well be laminar

NOTE: if NRe < 2,100, then

Friction Factor in Pipe (fp):

p Re

V f dL

Trang 36

Annular Flow - Turbulent

In the above example the flow up the annulus was laminar

Under conditions of low viscosity and/or high flow rate, the flow may very well be turbulent

NOTE: if N Re > 2,100, then Friction Factor in the Annulus:

b Re

1

=

( 2 1)

2 a a

V f dL

Trang 37

Critical Circulation Rate

Example

The above fluid is flowing in the annulus

between a 4.5” OD string of drill pipe

and an 8.5 in hole

The fluid density is 12.5 lb/gal

What is the minimum circulation rate that will ensure turbulent flow?

(why is this of interest?)

Trang 38

Critical Circulation Rate

In the Drillpipe/Hole Annulus:

Re

V D D

928 N

ρ

=

Trang 39

Optimum Bit Hydraulics

hydraulic cleaning at the bit?

 maximum hydraulic horsepower?

 maximum impact force?

Both these items increase when the circulation

rate increases

However, when the circulation rate increases, so does the frictional pressure drop

Trang 41

v f dp

_ 2

=

n = 1.0

Trang 42

Importance of Pipe Size

or,

25 1

25 0

75 1 _ 75 0 f

d 1800

v dL

75 4

25 0 75

1 75 0 f

d 624 ,

8

q dL

*Note that a small change in the pipe diameter results in

large change in the pressure drop! (q = const.)

Eq 4.66e

Decreasing the pipe ID 10% from 5.0” to 4.5” would result in an

Ngày đăng: 02/04/2023, 11:05

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w