Old Lesson 17B 1 1 Well Drilling Engineering Pressure Drop Calculations API Recommended Practice 13D Dr DO QUANG KHANH 2 Contents The API Power Law Model The Rotational Viscometer A detailed Exampl[.]
Trang 1Well Drilling Engineering
Pressure Drop Calculations
API Recommended Practice 13D
Dr DO QUANG KHANH
Trang 2Contents
The API Power Law Model
The Rotational Viscometer
A detailed Example - Pump Pressure
Pressure Drop in the Drillpipe
Pressure Drop in the Bit Nozzles
Pressure Drop in the Annulus
Wellbore Pressure Profiles
Trang 3Power Law Model
Trang 4Fluid Flow in Pipes and Annuli
Trang 5Fluid Flow in Pipes and Annuli
or RPM(
),
RATE
SHEAR(
n
1
Trang 6Rotating
Sleeve
Viscometer
Trang 7Rotating Sleeve Viscometer
VISCOMETER
RPM
3
100
API RP 13D
Trang 8API RP 13D, June 1995 for Oil-Well Drilling Fluids
API RP 13D recommends using only FOUR of
the six usual viscometer readings:
The 3 and 100 RPM reading are used for
pressure drop calculations in the annulus,
where shear rates are, generally, not very high
The 300 and 600 RPM reading are used for
pressure drop calculations inside drillpipe,
where shear rates are, generally, quite high
Trang 9Example: Pressure Drop Calculations
in the wellbore shown on the next page,
using the API method
readings are as follows:
Trang 10PPUMP = ∆PDP + ∆PDC
+ ∆PBIT NOZZLES + ∆PDC/ANN + ∆PDP/ANN + ∆PHYD
Trang 11Power - Law Constant (n):
Pressure Drop In Drill Pipe
Fluid Consistency Index (K):
Average Bulk Velocity in Pipe (V p ):
OD = 4.5 in
ID = 3.78 in
L = 11,400 ft
737
0 39
65 log
32
3 R
R log 32
600 p
cm
sec
dyne017
2022
,1
65
*11.5022
,1
R11
8 78
3
280
* 408
0 D
Q 408
0
Trang 12Effective Viscosity in Pipe (µep ):
Pressure Drop In Drill Pipe
Reynolds Number in Pipe (N Rep ):
ep
n 4
1 n
3 D
V
96 K
0
* 4
1 737
0
* 3 78
3
8
*
96 017
2
* 100
737 0 1
737 0
6 53
5 12
* 00 8
* 78 3
* 928 V
D
928 N
Trang 13NOTE: NRe > 2,100, so
Friction Factor in Pipe (fp):
Pressure Drop In Drill Pipe OD = 4.5 in
ID = 3.78 in
L = 11,400 ft
So,
b Re
050
93.3737
.0log50
93.3n
log
2690
07
737
0log75
.17
nlog75
1
007126
0616
,6
0759
0N
Trang 14Friction Pressure Gradient (dP/dL) p :
Pressure Drop In Drill Pipe OD = 4.5 in
ID = 3.78 in
L = 11,400 ft
Friction Pressure Drop in Drill Pipe :
400,
11
*05837
0
LdL
0 78
3
* 81 25
5 12
* 8
* 007126
0 D
81 25
V f dL
Trang 15Power-Law Constant (n):
Pressure Drop In Drill Collars
Fluid Consistency Index (K):
Average Bulk Velocity inside Drill Collars (Vdc):
OD = 6.5 in
ID = 2.5 in
L = 600 ft
737
0 39
65 log
32
3 R
R log 32
3
600 dc
cm
sec
dyne017
2022
,1
65
*11.5022
,1
R11
.
18 5
2
280
* 408
0 D
Q 408
0
Trang 16Effective Viscosity in Collars ( µec):
Reynolds Number in Collars (NRec):
OD = 6.5 in
ID = 2.5 in
L = 600 ftPressure Drop In Drill Collars
edc
n 4
1 n
3 D
V
96 K
38737
.0
*4
1737
0
*35
.2
28.18
*
96017
.2
*100
737 0 1
737 0
13 21
38
5 12
* 28 18
* 5 2
* 928 V
D
928 N
Trang 1793.3737
.0log50
93.3n
log
2690
07
737
0log75
.17
nlog75
1
005840
0 870
, 13
0759
0 N
Trang 18Friction Pressure Gradient (dP/dL)dc :
Friction Pressure Drop in Drill Collars :
OD = 6.5 in
ID = 2.5 in
L = 600 ftPressure Drop In Drill Collars
ft
psi 3780
0 5
2
* 81 25
5 12
* 28 18
* 005840
0 D
81 25
V f dL
dc
2 dc dc dc
0
LdL
Trang 19Pressure Drop across Nozzles
11
280
* 5 12
*
156 P
+ +
2 2 N
2 1 N
2
Nozzles
D D
D
Q
156 P
+ +
ρ
=
∆
Trang 21Power-Law Constant (n):
Fluid Consistency Index (K):
Average Bulk Velocity in DC/HOLE Annulus (Va):
0 3
20 log
657
0 R
R log 657
0
100 dca
cm
sec
dyne336
62
.170
20
*11.52
.170
R11
5K
=
sec
ft 808
.
3 5
6 5
8
280
* 408
0 D
D
Q 408
0
1
2 2
Trang 22Effective Viscosity in Annulus ( µea):
Reynolds Number in Annulus (NRea):
55 5413
0
* 3
1 5413
0
* 2 5
6 5 8
808
3
* 144 336
6
* 100
5413 0 1
5413 0
1 20
55
5 12
* 808
3
* 5 6 5 8 928 V
D D
928 N
ea
a 1 2
1 n
1 2
a a
ea
n3
1n
2D
D
V
144K
−
Trang 230 600
, 1
24 N
24
f
a Re
psi 05266
0 5
6 5 8 81 25
5 12
* 808
3
* 01500
0 D
D 81 25
V f dL
1 2
2 a a
0
L dL
dP
hole / dc
hole /
Trang 25Power-Law Constant (n):
Fluid Consistency Index (K):
Average Bulk Velocity in Annulus (V a ):
0 3
20 log
657
0 R
R log 657
0 n
100 dpa
cm
sec
dyne336
62
.170
20
*11.52
.170
R11
5K
=
sec
ft 197
2 5
4 5
8
280
* 408
0 D
D
Q 408
0
1
2 2
Trang 26Effective Viscosity in Annulus ( µea):
Reynolds Number in Annulus (NRea):
1 n
1 2
a a
ea
n3
1n
2D
D
V
144K
97 5413
0
* 3
1 5413
0
* 2 5
4 5 8
197 2
* 144 336
6
* 100
5413 0 1
5413 0
1 64
97
5 12
* 197
2
* 5 4 5 8 928 V
D D
928 N
ea
a 1 2
Trang 270 044
, 1
24 N
24
f
a Re
psi 01343
0 5
4 5 8 81 25
5 12
* 197 2
* 02299
0 D
D 81 25
V f dL
1 2
2 a a a
11
* 01343
0
L dL
dP
hole / dp
hole /
Trang 28Pressure Drop Calculations
- SUMMARY -
PPUMP = ∆PDP + ∆PDC + ∆PBIT NOZZLES
+ ∆PDC/ANN + ∆PDP/ANN + ∆PHYD
PPUMP = 665 + 227 + 1,026
+ 32 + 153 + 0
PPUMP = 1,918 + 185 = 2,103 psi
Trang 302,103 psi P CSG
= 0
BHP = 7,985 psig
Trang 312103
Trang 32Hydrostatic Pressures in the Wellbore
Trang 33Pressures in the Wellbore
2103
Trang 34Wellbore Pressure Profile
Trang 35Pipe Flow - Laminar
In the above example the flow down the drillpipe was turbulent
Under conditions of very high viscosity,
the flow may very well be laminar
NOTE: if NRe < 2,100, then
Friction Factor in Pipe (fp):
p Re
V f dL
Trang 36Annular Flow - Turbulent
In the above example the flow up the annulus was laminar
Under conditions of low viscosity and/or high flow rate, the flow may very well be turbulent
NOTE: if N Re > 2,100, then Friction Factor in the Annulus:
b Re
1
=
( 2 1)
2 a a
V f dL
Trang 37Critical Circulation Rate
Example
The above fluid is flowing in the annulus
between a 4.5” OD string of drill pipe
and an 8.5 in hole
The fluid density is 12.5 lb/gal
What is the minimum circulation rate that will ensure turbulent flow?
(why is this of interest?)
Trang 38Critical Circulation Rate
In the Drillpipe/Hole Annulus:
Re
V D D
928 N
ρ
−
=
Trang 39Optimum Bit Hydraulics
hydraulic cleaning at the bit?
maximum hydraulic horsepower?
maximum impact force?
Both these items increase when the circulation
rate increases
However, when the circulation rate increases, so does the frictional pressure drop
Trang 41v f dp
_ 2
=
n = 1.0
Trang 42Importance of Pipe Size
or,
25 1
25 0
75 1 _ 75 0 f
d 1800
v dL
∴
75 4
25 0 75
1 75 0 f
d 624 ,
8
q dL
*Note that a small change in the pipe diameter results in
large change in the pressure drop! (q = const.)
Eq 4.66e
Decreasing the pipe ID 10% from 5.0” to 4.5” would result in an