1. Trang chủ
  2. » Tất cả

ĐỀ CƯƠNG ÔN TẬP HỌC KỲ II

8 3 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 509 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

ĐỀ CƯƠNG ÔN TẬP HỌC KỲ II 1 ĐỀ CƯƠNG ÔN TẬP HỌC KỲ II Môn Toán khối 12 A PHẦN I LÝ THUYẾT I Đại số và giải tích Chương I 1 Sự biến thiên và cực trị của hàm số  Dấu hiệu nhận biết hàm số đồng biến, ng[.]

Trang 1

ĐỀ CƯƠNG ÔN TẬP HỌC KỲ II

Môn: Toán khối 12

A PHẦN I: LÝ THUYẾT

I Đại số và giải tích.

Chương I

1 Sự biến thiên và cực trị của hàm số:

 Dấu hiệu nhận biết hàm số đồng biến, nghịch biến trên TXĐ của nó

 Cách tìm cực trị của hàm số, dấu hiệu nhận biết cực đại, cực tiểu của hàm số tại x0 thuộc TXĐ

2 GTLN, GTNT của hàm số

 Định nghĩa và các quy tắc xác định GTLN, GTNN của hàm số liên tục trên một đoạn, một khoảng

3 Tiệm cận của của hàm số

 Định nghĩa về tiệm cận ngang, tiệm cận đứng của hàm số

 Phương pháp tìm tiệm cận của một số hàm số đơn giản thường gặp

4 Sơ đồ khảo sát hàm số

 Khảo sát các hàm số thường gặp: Hàm số bậc ba, bậc bốn trùng phương, hàm số hữu tỉ bậc nhất

 Khảo sát một số hàm số khác: Hàm lũy thừa, hàm số mũ, hàm số lôgarit

5 Các bài toán liên quan đến khảo sát hàm số và phương pháp giải các bài toán đó:

 Bài toán về sự tương giao của hai đồ thị ,bài toán biện luận số nghiệm của phương trình bằng đồ thị,

 Bài toán viết phương trình tiếp tuyến của đồ thị hàm số tại một điểm thuộc đồ thị hàm số và tìm phương trình tiếp tuyến của đồ thị hàm số khi biết hệ số góc của tiếp tuyến, biết tiếp tuyến song song hoặc vuông góc với một đường thẳng cho trước

Chương II

1 Lũy thừa và các tính chất của lũy thừa

2 Lôgarit và các tính chất của logarit

3 Hàm số mũ, hàm số lôgarit và các tính chất của chúng

4 Phương trình mũ, phương trình logarit và cách giải các phương trình đó

5 Bất phương trình mũ, bất phương trình logarit và cách giải các bất phương trình đơn giản

Chương III NGUYÊN HÀM- TÍCH PHÂN

1-Nguyên hàm

Khái niệm và tính chất của nguyên hàm

Tìm nguyên hàm của 1 số hàm số đơn giản bằng cách sử dụng định nghĩa,và công thức nguyên hàm cơ bản Phương pháp tính nguyên hàm từng phần và tính nguyên hàm bằng phương pháp đổi biến số

2-Tích phân

Khái niệm và tính chất của tích phân

Các phương pháp tính tích phân

3- Ứng dụng của tích phân trong hình học

Tính diện tích hình thang cong được giới hạn bởi các đồ thị cho trước

Tính thể tích của vật thể ,thể tích khối tròn xoay

III SỐ PHỨC

1 Định nghĩa số phức,2 số phức bằng nhau,biễu diễn hình học của số phức

2 Modun của số phức,và số phức liên hợp

3 Các phép toán cộng trừ nhân chia số phức

4 Căn bậc hai của số thực âm và giải phương trình bậc hai với hệ số thực

B HÌNH HỌC

Trang 2

I HỆ TỌA ĐỘ RONG KHÔNG GIAN

1 Khái niệm về tọa độ điểm, tọa độ vec tơ, biểu thức tọa độ của các phép toán vec tơ, khoảng cách giữa 2 điểm

2 Biểu thức tọa độ của tích có hướng của 2 véc tơ,tích và vô hướng của hai vecto

3 Ứng dụng của tích có hướng và tích vô hướng để giải được một số bài toán không gian ứng dụng vec tơ

II PHƯƠNG TRÌNH MẶT PHẲNG

1 Viết được phương trình mặt phẳng dựa vào các dữ kiện cho trước

Đặc biệt: mp qua 3 điểm không thẳng hàng và các trường hợp riêng của phương trình mặt phẳng

2 Điều kiện để hai mặt phẳng song song ,vuông góc

3.Khoảng cách từ một điểm đến một mặt phảng

III PHƯƠNG TRÌNH ĐƯỜNG THẲNG TRONG KHÔNG GIAN

1 Viết phương trình tham số và phương trình chính tắc của đường thẳng dựa vào các dữ kiện cho trước

2 Điều kiện để hai đường thẳng cắt nhau ,song song và chéo nhau

3 Viết phương trình mặt cầu dựa vào các dữ kiện cho trước ưVị trí tương đối của mặt cầu với đường thẳng

và mặt phẳng

PHẦN II :MỘT SỐ DẠNG BÀI TẬP CƠ BẢN.

Bài 1: Cho hàm số

1

3

x

x

y có đồ thị ( C) a)Khảo sát sự biến thiên và vẽ đồ thị ( C) của hàm số đã cho

b)Viết phương trình tiếp tuyến của đồ thị ( C) tại điểm có hoành độ x=2

c) Tính diện tích của hình phẳng giới hạn bởi đồ thị ( C) ,trục tung, trục hoành

Bài 2 Cho hàm số y  3xx3 có đồ thị ( C)

a)Khảo sát sự biến thiên và vẽ đồ thị ( C) của hàm số đã cho

b)Dựa vào đồ thị ( C) biện luận theo m số nghiệm của phương trình 3 3 0

x m x

c) Tính diện tích hình phẳng giới hạn bởi đồ thị ( C) và trục hoành

Bài 3 Cho hàm số y x33x1.

a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.

Bài 4: Cho hàm số 3

1

x y x

 a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.

điểm phân biệt M, N.

Bài 5 Cho hàm số y x42(m1)x2  2m , có đồ thị (C1 m)

a) Khảo sát và vẽ đồ thị (C) khi m 0

b) Viết pttt với (C) tại điểm có hoành độ x 2

c) Định m để hàm số có 3 điểm cực trị

GTLN – GTNN

Trang 3

Bài 1: Tìm GTLN và GTNN của các hàm số sau:

4

x

y  x  trên đoạn 1 ; 2 ; b) y  x22x3 ;

c) y x  4 x2 ; d) 2 1

1

y x

 

 trên khoảng (1;  ) ; e) y x 2  ln(1 2 ) x trên đoạn 2;0 ; f) 1

x y

x

 

 trên đoạn 2;4 g) y2sinx x trên đoạn ;

2 2

 

  ; h) y 2sinxsin 2x trên đoạn 0;3

2

  ;

Chương II PHƯƠNG TRÌNH,BẤT PHƯƠNG TRÌNH MŨ VÀ LOGARIT

Bài 1 Giải các phương trình(Đưa về cùng cơ số)

a 2x2 3x 2 2 2

2 3 1 1

3 3

xx

 

 

2

3 2

    d 2x2  x 8 41 3  x

Bài tập 2 Giải các phương trình

c 2x 1 2x 2 36

  

  

1

1

8

x

+

7

k) 2 5x+ 2 x+ 2 = 2 5 (ds 3x 3x x = 1)

Bài 1: Giải các phương trình( Đặt ẩn phụ)

a 3 2x 1 9.3x 6 0

d 7 2 1x 8.7 1 0x

   e 2.16x 15.4x 8 0

g 2 2x 3.2x2 32 0

   h 9x - 4.3x+1+27 = 0 i 3 4x 8 4.3 2x 5 27 0

Bài 2: Giải các phương trình

a 3.4x 2.6x 9x

  b 6.4x 13.6x 6.9x 0

15.25x 34.15x 15.9x 0

d 6.91x13.61x 6.41x 0 e) 3.8x 4.12x 18x 2.27x 0

Bài 3: Giải các phương trình

a ( 2 1 - ) (x+ 2 1 + )x- 2 2 = 0 (ds 1) ± c (5 + 24) (x+ - 5 24)x = 10 (ds 1) ±

d (4  15)x (4  15)x 62(x 2)

e  2 3 x 2 3x 4( s x= 2)d  f (3 8)x 16(3 8)x 8

Bài 2: Giải các phương trình sau:

a) log2[x(x 1)] = 1; b) log2x + log2(x 1) = 1;

1

4 log x 2 log x .

Bài 3: Giải các phương trình sau:

a) log3x +log9x +log27x =11; b) 1 2log x 25 log ( 5 x2);

Trang 4

c) 1  1  

log x log x 2 0; d) log2(2x+1).log2(2x+1+2) = 2.

Bài 4: Giải các bất phương trình sau:

2

2 3

x 

 

 

c) 16x 4x 6  0; d) 3 3

x

Bài 5: Giải các bất phương trình sau:

3

log (x 1)2; b) log4  log 43

2

x

0,2 0,2

log x log x 6 0 ; d) ln(3e x  2) 2 x ;

Chương III NGUYÊN HÀM-TÍCH PHÂN

Bài 1: Tìm nguyên hàm của các hàm số sau:

x

c) f x( ) 3sin x 2cos 2 ;x d) ( ) sin 5 cos3f xx x ;

e)

( )

1

f x

x

 ; ) ( ) 1 cos 22 ;

cos

x

f f x

x

1

g f x

Bài 2 : Tìm một nguyên hàm F(x) của hàm số f(x),biết rằng:

a) ( ) 2 3 2

x x x

b) f(x)  cos 5x cos 3x và ) 1

4 (  

F

Bài 3 Tính các tích phân sau:

1/ 

1

1

2

( x x dx 2/ dx

x x

2 1

3 2

1 1

3/  

2 1 3

2 2

dx x

x x

x

x x

e

  

2

1

7 5

2

5/ dx

x x

8

1

4 6/  

3

2

dx x

x

7/ 

4

0

2

sin

xdx 8/ e x dx

 0 1

3 2

9/ 

1

0

dx

e x

Bài 4: Tính các tích phân sau:

1)

3

2

3

x 1dx

 2)

4 2 1

x 3x 2dx

 3)

5 3

( x 2 x 2 )dx

Bài 5: Tính các tích phân sau bằng phương pháp đổi biến số:

Trang 5

1)

1

3

0

(2x 1) 

 2)

1 0

x dx 2x 1 

 3)

1 0

x 1 xdx 

4)

1

1 ln xdx

x

 5)

1

5 3 6 0

x (1 x ) dx 

 6) 

 

5 ln 3

ln e x 2e x 3

dx

7) 

2

11 x 1dx

x

8)edx

x

x x

1

ln ln 3

1 9)

1 x 0

1 dx

e 1 

Bài 4: Tính các tích phân sau bằng phương pháp tích phân từng phần:

1) 

1

0

3

.e dx

x x

2)  

2 0

cos ) 1 (

xdx

x 3)  

6 0

3 sin ) 2 (

xdx

x 4) 

2 0

2 sin

xdx

x 5) 

e

xdx

x

1

ln 6)  

e

dx x x

1

2 ) ln 1

( 7) 

3 1

ln

4x x dx 8)  

1

0

2 ).

3 ln(

x

9)

2

5

1

ln xdx

x

 10) 2 2

0

x cos xdx

 11)

1 x 0

e sin xdx

 12)

2

0 sin xdx

Bài 5: Tính tích phân các hàm số phân thức hữu tỉ sau:

1    

5

3

2 3 2

1

2

dx x

x

x

2.  

1

0

3

1

1

dx x

x x

3  

3

2dx

x

x

6   

1

0

2 4x 3

x dx

Bài 6: Tính tích phân các hàm lượng giác sau:

1 2 x 4xdx

0

2 cos

sin

2 

 2 2

3 cos 5 cos

xdx

x 3  

2 0

3

3 cos ) (sin

dx

2

0

4

(sin

2

cos

dx x x

2 3

sin 1

dx

x 6  

2

0 2 cos

x dx

Bài 7: Tính diện tích hình phẳng giới hạn bởi

a/ Đồ thị hàm số y x 1

x

  , trục hoành , đường thẳng x = -2 và đường thẳng x = 1 b/ Đồ thị hàm số y = ex +1 , trục hoành , đường thẳng x = 0 và đường thẳng x = 1

c/ Đồ thị hàm số y = x3 - 4x , trục hoành , đường thẳng x = -2 và đường thẳng x = 4

d/ Đồ thị hàm số y = sinx , trục hoành , trục tung và đường thẳng x = 2

Bài 8: Tính thể tích khối tròn xoay được tạo nên khi quay miền D quanh trục Ox:

a/ D giới hạn bởi các đường y = xlnx ; y = 0 ; x = 1 ; x = e

c/ D giới hạn bởi hai đường : y  4 x y x2 ;  2  2

d/ D giới hạn bởi các đường y = 2x2 và y = 2x + 4

e/ D giới hạn bởi các đường : y  x;y 2 x;y 0   

CHƯƠNG IV SỐ PHỨC

Bài 1 Thực hiện các phép tính sau:

Trang 6

a.2 3 1 2 i   i 3 4 i b 3 2 3 5 

2 3

i

i i

Bài 2 Tìm phần thực và phần ảo của mỗi số phức sau:

a ( 1 i) 2  ( 1  i) 2 ; b

i

i i

1 3

.

2

1

7 7

i

i

i i i i

i

3 2 3 2 1

1

Bài 3 Giải các phương trình sau trong tập số phức

a 3x2  x 2 0  b x2  3x  1 0

c 3 2x2  2 3x 2 0 

Bài 13 Tìm nghiệm phức của mỗi phương trình sau:

2

3 1 1

2

i

i z

i

i

b 4 5i z 2 i     c z 3 1i 3 1i

z

  e     0 ;

2

1 3

i iz i z

z

z

Bài 14 Tìm tập hợp các điểm M trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện sau:

a) z  1 1 b)1 z i 2 c)2i 2z 2z1

II PHẦN HÌNH HỌC

Bài 1 Cho ba điểm không thẳng hàng: A(1;3;7), ( 5; 2;0), (0; 1; 1).BC  

a Tìm tọa độ trọng tâm G của tam giác ABC

b Tính chu vi tam giác ABC

c Tìm tọa độ điểm D để tứ giác ABCD là hình bình hành

d Tìm tọa độ diểm M sao cho GA  2GM

Bài 2 Viết phương trình mặt cầu trong các trường hợp sau:

a Tâm I(2;1;-1), bán kính R = 4

b Đi qua điểm A(2;1;-3) và tâm I(3;-2;-1)

c Đường kính là AB với A(-1;2;3), B(3;2;-7)

d Đi qua bốn điểm (0; 0; 0), A(2; 2; 3), B(1; 2; -4), C(1; -3; -1)

Bài 3 Trong không gian Oxyz, cho bốn điểm A( 3;-2;-2), B(3;2;0), C(0;2;1), D(-1;1;2)

a Viết phương trình mặt phẳng (ABC)

b Viết phương trình mặt phẳng trung trực của đoạn AC

c Viết phương trình mặt phẳng (P) chứa AB và song song với CD

Bài 4 Trong không gian Oxyz, cho mặt phẳng (P): 2x + y - z - 6 = 0

Trang 7

a Viết phương trình mp (Q) đi qua gốc tọa độ O và song song với mp (P).

b Tính khoảng cách từ gốc tọa độ đến mặt phẳng (P)

Bài 5 Lập phương trình tham số và chính tắc của đường thẳng (d) trong các trường hợp sau :

a (d) đi qua điểm M(1;0;1) và nhận a(3; 2;3)làm VTCP

b (d) đi qua 2 điểm A(1;0;-1) và B(2;-1;3)

c (d) đi qua A(2; -1; 3) và vuông góc mặt phẳng (P): 3x + 2y – z + 1 = 0

Bài 6 Cho hai đường thẳng (d1),(d2) có phương trình cho bởi :

 

1

1 2

1 1

2 : 1

x

31 2

21 :

t z ty

t

x



a) CMR hai đường thẳng đó cắt nhau Xác định toạ độ giao điểm của nó

b) Viết phương trình tổng quát của mặt phẳng (P) chứa (d1),(d2)

Bài 7 Trong không gian Oxyz cho A(3;-1;0) , B(0;-7;3) , C(-2;1;-1) , D(3;2;6).

a Viết phương trình mặt phẳng (ABC).Suy ra ABCD là một tứ diện

b Viết phương trình đường thẳng (d) qua D vuông góc với mặt phẳng (ABC)

c Tìm tọa độ điểm D’ đối xứng D qua mặt phẳng (ABC)

d Viết phương trình mặt cầu (S) tâm D và tiếp xúc với mp(ABC)

Bài 8 Lập phương trình mp(P) qua d: 1 1 2

xyz

  và song song với đường thẳng

d/: 2 2

3 3

x t

 

3 3 4

xyz

1

6 2 1

z

 

 

Bài 9.Trong không gian tọa độ Oxyz, cho mặt cầu (S) và mặt phẳng (P) có phương trình: (S):

x và (P): x + 2y + 2z +18 = 0

1 Xác định tọa độ tâm T và bán kính mặt cầu (S) Tính khoảng cách từ T đến mặt phẳng (P)

2 Viết phương trình tham số của đương thẳng d đi qua T và vuông góc với (P) Tìm tọa độ giao điểm của d và (P)

Trang 8

Bài 10 Cho mp(P): 2x – 3y – 6z + 10 = 0 và đường thẳng d:

7 3

13 9

1 2

 

  

a Tìm điểm M thuộc d có hoành độ x = 3

b Viết phương trình mặt cầu tâm M và tiếp xúc với (P)

c Viết phương trình mặt cầu tâm M và cắt (P) theo đường tròn (C) có bán kính bằng 15

Ngày đăng: 11/11/2022, 16:39

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w