1. Trang chủ
  2. » Luận Văn - Báo Cáo

Bộ đề thi giữa kì 1 môn toán lớp 9 các trường Hà Nội

213 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề bộ đề thi giữa kì 1 môn toán lớp 9
Trường học hà nội
Chuyên ngành toán
Thể loại tài liệu
Năm xuất bản 2020-2021
Thành phố hà nội
Định dạng
Số trang 213
Dung lượng 2,93 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Phiếu học tập tuần toán 7 Tailieumontoan com  Điện thoại (Zalo) 039 373 2038 BỘ ĐỀ THI GIỮA KÌ 1 MÔN TOÁN LỚP 9 HÀ NỘI Tài liệu sưu tầm, ngày 8 tháng 12 năm 2020 Website tailieumontoan com 1 ĐỀ KHẢO SÁT CHẤT LƯỢNG GIỮA KỲ I QUẬN HÀ ĐÔNG MÔN TOÁN 9 NĂM HỌC 2020 2021 MÔN Bài 1 (2 điểm) Thực hiện phép tính 1) 2 50 24 6 3 3 A   = + −     2) 14 7 15 5 1 2 1 3 1 7 5 B  − − = +  − − −  Bài 2 (2,5 điểm) Giải phương trình a) 1) 3 5 12 7 27 12x x x− + = b) 2) 3 2 2 3x + = Bài 3 (2 điểm)[.]

Trang 1

Tailieumontoan.com



Điện thoại (Zalo) 039.373.2038

BỘ ĐỀ THI GIỮA KÌ 1

MÔN TOÁN LỚP 9 HÀ NỘI

Tài liệu sưu tầm, ngày 8 tháng 12 năm 2020

Trang 2

ĐỀ KHẢO SÁT CHẤT LƯỢNG GIỮA KỲ I

QU ẬN HÀ ĐÔNG - MÔN TOÁN 9 NĂM HỌC 2020-2021

BHD BKC

Bài 5: Tìm giá trị nhỏ nhất của biểu thức: K = 5x+6 5x− +9 5x−6 5x−9

H ẾT

Trang 4

03

x

⇔ = > (thỏa mãn điều kiện)

Vậy phương trình có tập nghiệm 1

Vậy phương trình có tập nghiệm S= ±{ }5

Bài 3: (2 điểm) a) Thay x= 1, 44 (tmđk) vào biểu thức A ta được:

Trang 5

Vậy GTNN của S là 5 đạt được khi x= 4

2) Xét tam giác vuông ABK, đường cao AD ta có: AB2 =BD BK (1)

Xét tam giác vuông ABC, đường cao AH ta có: AB2 =BH BC (2)

BHD

BKC

HE BD S

Trang 6

1 2 

cos4

Trang 7

TRƯỜNG THCS BA ĐÌNH

ĐỀ THI GIỮA HỌC KÌ 1 NĂM HỌC 2020-2021 MÔN: TOÁN 9 Câu 1 Tính giá trị biểu thức

tan 40 sin 50o o− + − 3 1 sin 40o 1 sin 40 + o

Câu 2 Giải phương trình:

Câu 3 Cho biểu thức: 1 1

x

=

− với x> 0,x≠ 1,x≠ 9 a)Tính giá trị biểu thức B khi x= 36

2)Cho tam giác ABC vuông tại A, đường cao AH

a)Biết AB= 4cm, AC= 4 3cm Giải tam giác ABC

b)Kẻ HD HE, lần lượt vuông góc với AB AC, (D thuộc AB, E thuộc AC) Chứng

BD DA CE EA+ =AH c)Lấy điểm M nằm giữa EC, kẻ AI vuông góc với MB tại I. Chứng minh

sinAMB.sinACB HI

CM

=

Trang 8

Câu 5 Giải phương trình ( 2 ) ( )

2 x− 2x + 5x− 3 = + 1 x 2x− − 1 2 x+ 3

TRƯỜNG THCS BA ĐÌNH

ĐỀ THI GIỮA HỌC KÌ 1 NĂM HỌC 2020-2021 MÔN: TOÁN 9

HƯỚNG DẪN GIẢI CHI TIẾT Câu 1 a)2 45+ 5 3 80−

tan 40 sin 50 3 1 sin 40 1 sin 40

tan 40 sin 50 3 (1 sin 40 )

sin 40

os 40 3 1 sin 40 cos 40

Trang 9

9 1

9 1

x x

x x x

Vậy phương trình có nghiệm x=9

Câu 3 a)Tính giá trị biểu thức B khi x= 36

Khi x= 36 (thỏa mãn điều kiên xác địnhx> 0,x≠ 1,x≠ 9), ta có:

Trang 10

Ta có:

1 2

1 2 3 1 0 2 3

0

3 0

B

x x x x

x x x

x x x

3

3 5 3 5 1

+

− +

Trang 11

a)Biết AB= 4cm, AC= 4 3cm Giải tam giác ABC

Xét ∆ABC vuông tại A, đường cao AH có:

Trang 12

b)Kẻ HD HE, lần lượt vuông góc với AB AC, (D thuộc AB, E thuộc AC) Chứng

BD DA CE EA+ =AH Xét ∆ABH vuông tại H, DH là đường cao

- Xét ∆ABM vuông tại A có đường cao AI

Áp dụng hệ thức lượng trong tam giác vuông ta có : 2

BI BM = AB Xét ∆ABC vuông tại Acó đường cao AH

Áp dụng hệ thức lượng trong tam giác vuông ta có : 2

Trang 13

 (a≥0,b>0)

2 2 2

Trang 14

⇔ = (thỏa mãn điều kiện)

Vậy phương trình có tập nghiệm S={ }1

PHÒNG GD VÀ ĐT QUẬN CẦU GIẤY TRƯỜNG THCS CẦU GIẤY

ĐỀ KIỂM TRAGIỮA HỌC KÌ I NĂM HỌC 2020-2021 MÔN: TOÁN 9 Bài 1: (2 điểm) Tính giá trị biểu thức

Trang 15

2 Cho ∆ABC nhọn có ABC= °60 , đường cao AH Đường thẳng qua C vuông góc với AC cắt đường thẳng AH tại D Gọi EF lần lượt là hình chiếu của

H trên ACCD

a) Nếu AH =3cm, AC=5cm Tính độ dài các đoạn thẳng HC, HD, CD?

b) Chứng minh rằng CF CD =CE CA.

c) Biết AB+BC=8cm, tìm giá trị lớn nhất của diện tích tam giác ABC

Bài 5: (0,5 điểm) Cho a b c, , là các số thực dương thỏa mãn: ab bc+ +ca=abc Tìm giá

Trang 16

x=16 (thỏa mãn điều kiện)

Vậy phương trình có nghiệm x=16

Trang 17

⇔ (x−5 ) (x−145)=0

x− =5 0 (do đk x≤9 nên x−145<0)

x=5 (thỏa mãn điều kiện 1≤ ≤x 9)

Vậy phương trình có nghiệm x=5

⇔ (x−2 ) (x+ =1) 0 ⇔ x= −1 hoặc x=2 (thỏa mãn điều kiện)

Kết hợp với điều kiện ta được phương trình có tập nghiệm

Trang 18

1 3 8

x B

x x

=+

=+

Trang 19

a) Nếu AH =3cm, AC=5cm Tính độ dài các đoạn thẳng HC, HD, CD?

+) Xét ∆AHC vuông tại H, đường cao HE ta có:

AC

+) Xét tứ giác HECF có: HEC=ECF=HFC 90= °

⇒ tứ giác HECF là hình chữ nhật (dấu hiệu nhận biết)

2 2

D

H

A

Trang 20

HC =CE AC (quan hệ giữa cạnh và đường cao tam giác vuông) ( )1

+) Xét ∆CHD vuông tại H, đường cao HF ta có:

HC =CF CD (quan hệ giữa cạnh và đường cao tam giác vuông) ( )2

Từ ( )1 và ( )2 ⇒CF CD =CE CA. (điều phải chứng minh)

c) Biết AB+BC=8cm, tìm giá trị lớn nhất của diện tích tam giác ABC

Trang 21

P

Dấu bằng xảy ra khi b a c( + =) (c a b+ ) (=a b c+ ⇔) ab bc+ =ac bc+ =ab ac+

abc ac abc ab abc bc

ab bc ca

⇔ = = mà ab bc+ +ca=abc⇔ = = =a b c 3

 H ẾT 

Trang 22

PHÒNG GD VÀ ĐT HUYỆN ĐAN PHƯỢNG

ĐỀ KIỂM TRA GIỮA HỌC KÌ I NĂM HỌC 2020-2021 MÔN: TOÁN 9 Bài 1 (1,5 điểm) Rút gọn các biểu thức sau:

=+ và

1:

AM MB+AN NC=AH ; d) Chứng minh: 3

tan C BM

CN

Bài 5. (0,5 điểm) Cho a b, là các số thực dương thỏa mãn điều kiện ( a+ 1)( b+ ≥ 1) 4.

Tìm giá trị nhỏ nhất của biểu thức P a2 b2

H ẾT

Trang 23

ĐÁP ÁN ĐỀ KIỂM TRA GIỮA KÌ I PHÒNG GD&ĐT ĐAN PHƯỢNG

Năm học: 2020-2021 HƯỚNG DẪN GIẢI CHI TIẾT

Trang 24

a) Ta có x=25(thỏa mãn điều kiện), thay vào biểu thức Ata có:

x là số vô tỉ nên P không là số nguyên (loại)

+) Nếu x là số nguyên nên P là số nguyên

3

x

⇔ là số nguyên

Trang 25

⇔ là ước dương của 3

13

x x

nhậnnhận

x x

  

   

111

x x

 

  

Trang 26

Vậy tập nghiệm của phương trình là S11; 1 

Xét tam giácABCvuông tại A đường cao AH

Ta có: AB AC =AH BC. ( Hệ thức giữa đường cao và các cạnh góc vuông)

9, 620

AB AC AH

Vậy AC= 16 cm, AH =9, 6chứng minnh,  53ABC≈ °

b) Xét ∆AHC đường cao HN

Trang 27

.

3 3

3

Bài 5. Từ giả thiết ( a+ 1)( b+ ≥ 1) 4 ⇔ ab+ a+ b+ ≥1 4 ⇔ ab+ a+ b ≥3

Áp dụng bất đẳng thức Cô-si cho 2 số thực dương a b, :

Trang 28

P

⇔ ≥

Dấu “=” xảy ra khi và chỉ khi a= =b 1

Vậy giá trị nhỏ nhất của P= 2 khi a= =b 1

TRƯỜNG THCS ĐỐNG ĐA

ĐỀ KIỂM TRA GIỮA HỌC KỲ I NĂM HỌC 2020-2021 MÔN: TOÁN 9

I PH ẦN TRẮC NGHIỆM ( 1 điểm ) Chọn đáp án đúng trong mỗi câu sau

Câu 1 Căn bậc hai của 9 là

Câu 3 Một cái thang dài 3, 5m đặt dựa vào tường, góc “an toàn” giữa thang và mặt đất để

thang không đổ khi người trèo lên là 65° Khoảng cách “an toàn” từ chân tường

đến chân thang (Kết quả làm tròn đến chữ số thập phân thứ nhất) là :

Câu 4 Tam giác ABC vuông tại A , có đường cao AH chia cạnh huyền thành hai đoạn

thẳng có độ dài 3, 6cm và 6, 4cm Độ dài một trong các cạnh góc vuông là

II PH ẦN TỰ LUẬN ( 9 điểm)

Bài 1 (1,5 điểm) Thực hiện phép tính

Trang 29

b) Chứng minh 6

1

x P x

Cho tam giác ABCnhọn , đường cao AK

a) Giải tam giác ACKbiết C 30 ,= ° AK =3cm

b) Chứng minh

cot cot

BC AK

ĐÁP ÁN ĐỀ KIỂM TRA HÌNH HỌC – CHƯƠNG III - TOÁN 8

TRƯỜNG THCS HÀ NỘI – AMSTERDAM

HƯỚNG DẪN GIẢI CHI TIẾT

Câu 1 Căn bậc hai của 9 là

Trang 30

L ời giải

Ch ọn B

Căn bậc hai của số 9 là ± 3

Câu 2 3 5xxác định khi và chỉ khi

Câu 3 Một cái thang dài 3, 5m đặt dựa vào tường, góc “an toàn” giữa thang và mặt đất để

thang không đổ khi người trèo lên là 65° Khoảng cách “an toàn” từ chân tường

đến chân thang (Kết quả làm tròn đến chữ số thập phân thứ nhất) là :

L ời giải

Ch ọn D

Chiều dài thang là BC=3, 5m

Góc “an toàn” là  56ABC= °

Khoảng cách an toàn là AB

Áp dụng tỉ số lượng giác của góc nhọn cho tam giác vuông ABC ta có:

cosB AB AB BC.cosB 3, 5.cos 65 1, 5

BC

Câu 4 Tam giác ABC vuông tại A , có đường cao AH chia cạnh huyền thành hai đoạn

thẳng có độ dài 3, 6cm và 6, 4cm Độ dài một trong các cạnh góc vuông là

Trang 32

Vậy tập nghiệm của phương trình là: S={ }40

Trang 33

Vậy tập nghiệm của phương trình là: S= −{1 2; 1 + 2}

Câu 3 a) Thay x=9 ( thỏa mãn điều kiện) vào M ta được:

Trang 34

a) Xét tam giác ACKvuông tại KC = ° ⇒ = °30 B 60 ( theo định lí tổng ba góc trong tam giác)

d) Kẻ DIBDtại Dkhi đó  ADN =CDI ( cùng phụ với CDN),

Khi đó ∆ADNCDI g( −g)

Trang 35

Th ời gian làm bài 90 phút Câu 1 (2 điểm) Thực hiện phép tính

2) Rút gọn biểu thức B

3) Tìm các giá trị của x để 1

2

B≤ −

Trang 36

1) Một con thuyền đi qua một khúc sông theo

hướng từ B đến C (như hình vẽ) với vận tốc

3, 5km h/ trong 12 phút Biết rằng đường đi của

thuyền tạo với bờ sông một góc 25° Hãy tính

chiều rộng của khúc sông ? (Kết quả tính theo đơn

b Kẻ HF vuông góc với AC tại F Chứng minh AB AE = AC AF

c Đường thẳng qua A và vuông góc với EF cắt BC tại D; EF cắt AH tại O

Chứng minh rằng 2 2

sin sin

AOE ADC

S S

ĐÁP ÁN ĐỀ KIỂM TRA GIỮA HỌC KÌ 1 TOÁN 8

TRƯỜNG THCS NGÔ SĨ LIÊN

Thời gian làm bài 90 phút HƯỚNG DẪN GIẢI CHI TIẾT

Trang 37

++

Trang 38

1) Khi x= ⇒9 x=3 thỏa mãn điều kiện.Thay vào biểu thứcA ta được:

x x

Trang 39

M x x

Gọi chiều rộng của khúc sông là CH Đường đi

của con thuyền là BK suy ra

H A

Trang 40

S S

F E

H A

Trang 42

ĐỀ KIỂM TRA GIỮA KÌ I NĂM HỌC 2020-2021 MÔN: TOÁN 9

Bài 1: (2 điểm) Thực hiện phép tính:

+

=

− và 9

93

B

x x

+

−+ với x≥0; x≠9

a) Tính giá trị biểu thức của A khi x= 4

Bài 4: (1,5 điểm) Hải đăng Đa Lát là một trong những ngọn hải đăng cao nhất Việt Nam,

được đặt trên đảo Đá Lát ở vị trí cực Tây Quần đảo, thuộc xã đảo Trường Sa, huyện

Trang 43

Trường Sa, tỉnh Khánh Hòa Ngọn hải đăng được xây dựng năm 1994, cao 42 mét,

có tác dụng chỉ vị trí đảo, giúp tàu thuyền hoạt động trong vùng biển Trường Sa định hướng và xác định được vị trí của mình Một người đi trên tàu đánh cá muốn đến

ngọn hải đăng Đá Lát, người đó đứng trên mũi tàu cá và dùng giác kế đo được góc

giữa mũi tàu và tia nắng chiếu từ đỉnh ngọn hải đăng đến tàu là 10°

a) Tính khoảng cách từ tàu đến chân ngọn hải đăng (làm tròn đến 1 chữ số

thập phân)

b) Biết cứ đi 10m thì tàu đó hao tốn hết 0,02 lít dầu Hỏi tàu đó đi đến ngọn hải đăng

Đá Lát cần tối thiểu bao nhiêu lít dầu?

Bài 5: (2 điểm) Cho tam giác ABC vuông tại A (AB<AC), đường cao AH

a) Cho AB= 6 cm và  3.

5

cosABC = Tính BC, AC , BH

b) Kẻ HD AB⊥ tại D , HEAC tại E Chứng minh AD AB =AE AC.

c) Gọi I là trung điểm BC , AI c ắt DE tại K Chứng minh:

Trang 44

PHÒNG GD VÀ ĐT QUẬN HOÀN KIẾM TRƯỜNG THCS NGÔ SĨ LIÊN

ĐỀ KIỂM TRA GIỮA KÌ I NĂM HỌC 2020-2021 MÔN: TOÁN 9 HƯỚNG DẪN GIẢI CHI TIẾT

x x

Trang 45

Vậy phương trình có tập nghiệm S ={ }3

33

x

x x

Vậy phương trình có tập nghiệm S ={ }0

Bài 3: a) Thay x= 4(thoả mãn điều kiện) vào biểu thức A ta được: 2.2 4 8

B

x x

+

−+

+

=

Trang 46

a) Gọi chân ngọn hải đăng là A , đỉnh

ngọn hải đăng là B , mũi tàu là C ta có ∆ABC

Trang 47

b) Tàu đó đi 1m cần số lít dầu là: 0,02 : 10 = 0,002 l

Tàu đó đi đến ngọn hải đăng Đá Lát cần tối thiểu số lít dầu là: 0,002.238,2 =

⇒ = = = ⇒ ∆ cân tại IIAC=ICA ( )1

Xét hai tam giác AED∆ và ∆ABC có chung góc A ;

AD AB AE AC

Suy ra ∆AED∽ ∆ABC (c – g – c) ⇒ AED=ABC ( )2

Mà tam giác ABC vuông tại A⇒  90ABC+ICA= ° ( )3

Từ ( )1 , ( )2 , ( )3 suy ra IAC +AED= ° ⇒90 AKE= ° ⇒90 AKED tại K

Xét ADE∆ vuông tại A , đường cao AK ⇒ 12 1 2 12

H B

A

C

Trang 48

a) Tính giá trị của biểu thức với b) Rút gọn biểu thức

c) Cho Tìm để d) Tìm để nhận giá trị nguyên

Bài 3 (1,5 điểm) Giải phương trình:

a) b)

Bài 4 (0,5 điểm) Tại một thời điểm trong ngày, một cái cây có bóng trên mặt đất dài

Tính chiều cao của cây biết tia nắng mặt trời hợp với phương thẳng đứng một góc

Bài 5 (3 điểm) Cho vuông tại , đường cao Biết ,

x A x

ABC

PHÒNG GD VÀ ĐT QUẬN BA ĐÌNH TRƯỜNG THCS NGUYỄN CÔNG TRỨ

ĐỀ KIỂM TRAGIỮA HỌC KÌ I NĂM HỌC 2020-2021 MÔN: TOÁN 9

Trang 49

b) Kẻ vuông góc với ở và vuông góc với ở Tính độ dài

c) Chứng minh

 H ẾT  HƯỚNG DẪN GIẢI CHI TIẾT

Bài 1: a) 2 8 2 18 50

3

2 2.2 2 3 2 5 2

Trang 50

− + − với x≥ 0;x≠ 9( 3)(3 3) 1 3 2 3

=+

Để 5

2

21

x x

+

5021

x x

+

01

x x

Trang 51

x x

Ta có hình minh họa, trong đó:

AB: là chiều cao của cây

AC: độ dài bóng cây, AC=4,5m

ABC là góc hợp bởi tia nắng mặt trời với

phương thẳng đứng, 50ABC = °

Xét ∆ABC vuông tại A, áp dụng hệ thức về

cạnh và góc trong tam giác vuông ta có:

C

Trang 52

Vì ∆ABC vuông tại A nên C= ° − = ° − ° = °90 B 90 53 37

b) Xét ∆ABC vuông tại A, đường cao AD, ta có:

AB AC AD

AB =BD BC; AC2 =CD BC ; BE BA =BD2; CF CA CD = 2

Khi đó( ) 2 22

1

A

Trang 53

TRƯỜNG THCS NGUYỄN TRƯỜNG TỘ

KI ỂM TRA GIỮA HỌC KÌ 1

Ngày 11/11/2020 MÔN TOÁN 9

Th ời gian làm bài 90 phút

Câu 6 (1,5 điểm) Tính giá trị các biểu thức sau:

2 Cho ∆ABC vuông tại A, đường cao AH Kẻ HEAB tại EHFAC tại

AB AC HF

Trang 54

Câu 10 (0,5 điểm)

Cho a b c, , ≥0 và thỏa mãn (a b b c c+ )( + )( +a)=8 Chứng minh ab bc+ +ca≤ 3.

H ẾT

ĐÁP ÁN ĐỀ KIỂM TRA GIỮA HỌC KÌ 1 TOÁN 9

TRƯỜNG THCS LÊ NGỌC HÂN

Thời gian làm bài 90 phút HƯỚNG DẪN GIẢI CHI TIẾT

Trang 55

Vậy nghiệm của phương trình là x=1;x= −6

Câu 3 a) Thay x= 16 (tmđk) vào 3 1 3.4 1 11

4 33

x A

Trang 56

Xét ∆ACH vuông tại H, chiều cao HF ta có: 2

AH =AF AC (hệ thức lượng trong tam giác) (2)

Trang 57

2 3

2 2

Trang 58

TRƯỜNG THCS PHÚ DIỄN

ĐỀ KIỂM TRA GIỮA HỌC KÌ I NĂM HỌC 2020-2021 MÔN: TOÁN 9 Câu 1 Tính giá trị biểu thức

1) Tính chiều cao cột cờ, biết bóng của cột cờ được chiếu bởi ánh sáng của Mặt

Trời xuống đất dài 10,5mvà góc tạo bởi tia sáng với mặt đất là 35 45′ °

2) Cho tam giác ABC vuông tại A AH, là đường cao

Trang 59

Câu 5 Cho ,x y là hai số thực dương thỏa mãn x+ ≥y 3

Tìm giá trị nhỏ nhất của biểu thức 2 2 28 1

HƯỚNG DẪN GIẢI CHI TIẾT Câu 1.

Trang 60

x x

⇔ = (Thỏa mãn)

Câu 3 a) Với x= 9(thỏa mãn) ⇒ x = 3

Trang 61

Thay x= 9 và x=3 vào A ta được

x A

Trang 62

Gọi AB là chiều cao cột cờ AC là bóng của cột cờ trên mặt đất

Xét tam giác ABC vuông tại A

A

H

C B

A

Trang 63

A

Trang 64

r AH

C N

M

I

E

H D

x K

B

A

Trang 65

2 3

+

=+

c) Tìm tất cả các giá trị nguyên của x để P=A B có giá trị nguyên

Trang 66

Bài 4 (3,5 điểm)

1) Một cột đèn có bóng trên mặt đất dài 6m Các tia nắng mặt trời tạo với mặt đất

một góc xấp xỉ bằng 0

40 Tính chiều cao của cột đèn (làm tròn đến mét)

2) Cho tam giác ABC vuông tại A, đường caoAH Biết AB= 3cm AC, = 4cm a) Tính AH

b) Gọi D E, lần lượt là hình chiếu của H trên ABAC Chứng minh tam giác

AEDvà tam giác ABC đồng dạng

c) Kẻ trung tuyến AM, gọi N là giao điểm của AMDE Tính tỉ số diện tích

của tam giác ANDvà tam giác ABC

Bài 5 (0,5 điểm) Tìm các số x y z, , thỏa mãn đẳng thức:

Năm học: 2020-2021

ĐỀ 1 HƯỚNG DẪN GIẢI CHI TIẾT Bài 1.

Trang 68

A

Trang 69

a) Xét ∆ABC vuông tại A, đường cao AH:

AH =

12 5

AH = (cm)

b) Xét ∆ABH vuông tại H, đường caoHE:

2

.

AH = AD AB ( hệ thức lượng trong tam giác vuông)

Xét ∆AHC vuông tại H, đường cao HD

Trang 70

AH AD

AND BAC

Trang 71

TRƯỜNG THCS THANH XUÂN

ĐỀ KIỂM TRA GIỮA HỌC KỲ 1- NĂM HỌC 2020-2021

MÔN TOÁN 9

ĐỀ BÀI Câu 1: ( 2 điểm) Cho biểu thức 6

c) Tìm giá trị nguyên của a để B nhận giá trị nguyên

Câu 2: Tính giá trị biểu thức:

Câu 4: Cho hình bình hành A B C D′ ′ ′ ′ có 'A = <α 90o Gọi I , K lần lượt là hình chiếu của

B′, D′ trên đường chéo A C′ ′ Gọi M , N lần lượt là hình chiếu của C′ trên các

đường thẳng A B′ ′

a) Chứng minh rằng: Tam giác B C M′ ′ đồng dạng với tam giác D C N′ ′

b) Chứng minh rằng: Tam giác C MN′ đồng dạng với tam giác B C A′ ′ ′

Từ đó suy ra MN = A C′ ′ sinα

Trang 72

Đối chiếu điều kiện ta có a∈{5;3; 6; 2; 7;1;10}

Vậy a∈{5;3; 6; 2; 7;1;10} thì B nhận giá trị nguyên

Trang 73

49

Trang 74

⇒  ∈∅ ⇒ =

Thử lại với a = 2 thấy thỏa mãn

Vậy tập nghiệm của phương trình là S ={ }2

Trang 76

* TH1: t= ⇒ = 0 P 0

Trang 77

* TH2:

( )2 2

3

t

t t

x B

x x

−+

a) Tính A với x=9

b) Chứng minh biểu thức 1

5

B x

=

Trang 78

c) Cho P 3.B

A

= Tìm x nguyên để P có giá trị là một số nguyên

Câu 4 (3,5điểm) Cho tam giác ABC vuông tại A, AB=3cm, AC=4cm

a) Giải tam giác ABC

b) Gọi I là trung điểm của BC, vẽ AHBC Tính AH AI,

c) Qua A kẻ đường thẳng xy vuông góc với AI Đường thẳng vuông góc với BC

tại B cắt xy tại điểm M, đường thẳng vuông góc với BC tại C cắt xy tại điểm

N Chứng minh: 2

4

BC

d) Gọi K là trung điểm của AH Chứng minh B K N, , thẳng hàng

Câu 5 (0,5 điểm) Giải phương trình: 2

Trang 79

+ =

⇔  + = −

Trang 80

x x

x B

x x

−+

x+ ≥2 2 với mọi x thỏa mãn điều kiện

x+ =2 3⇔ x=1 (thỏa mãn điều kiện)

Vậy x=1 để P có giá trị là một số nguyên

A

C

Liên h ệ tài liệu word toán SĐT và zalo: 039.373.2038 TÀI LI ỆU TOÁN HỌC

Trang 81

12 5

AH

⇒ = cm

*) ∆ABC vuông tại A , có AI là trung tuyến

12

Ngày đăng: 27/05/2022, 15:11

HÌNH ẢNH LIÊN QUAN

Đồ thị của hàm số  y = 2 x − 6 ( ) d là đường thẳng đi qua 2 điểm  ( 0; 6 − )  và  ( ) 3; 0 - Bộ đề thi giữa kì 1 môn toán lớp 9 các trường Hà Nội
th ị của hàm số y = 2 x − 6 ( ) d là đường thẳng đi qua 2 điểm ( 0; 6 − ) và ( ) 3; 0 (Trang 115)
Đồ thị hàm số  y = + x 2  đi qua điểm  A ( ) 0; 2  và  B ( − 2; 0 ) . - Bộ đề thi giữa kì 1 môn toán lớp 9 các trường Hà Nội
th ị hàm số y = + x 2 đi qua điểm A ( ) 0; 2 và B ( − 2; 0 ) (Trang 164)
Đồ thị của hàm số là đường thẳng  AB - Bộ đề thi giữa kì 1 môn toán lớp 9 các trường Hà Nội
th ị của hàm số là đường thẳng AB (Trang 172)

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w