1. Trang chủ
  2. » Khoa Học Tự Nhiên

Lecture notes in mathematics

177 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Representations of AF-Algebras and of the Group U(oo)
Tác giả Dr. Serban-Valentin Stratila, Dr. Dan-Virgil Voiculescu
Người hướng dẫn Dold, B. Eckmann
Trường học Academie de la Republique Socialiste de Roumanie
Thể loại lecture notes
Năm xuất bản 1975
Thành phố Bucuresti
Định dạng
Số trang 177
Dung lượng 4,36 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Eckmann 486 ~erban Str&til& Dan Voiculescu Representations of AF-Algebras and of the Group U oo r Springer-Verlag Berlin... Representations of iF-al~ebras and of the 6roup Lecture

Trang 1

Edited by ,~ Dold and B Eckmann

486

~erban Str&til&

Dan Voiculescu

Representations of AF-Algebras and of the Group U (oo)

r

Springer-Verlag

Berlin Heidelberg-NewYork 1975

Trang 2

Representations of iF-al~ebras and of the 6roup

(Lecture notes in mathematics ; 486)

Bibliography: p

Includes indexes

i Operator algebras 2 Representations of alge-

bras 3 Locally compact groups 4 Representations of

groups I Voiculescu~ Dan-~-irgil, 1949- joint authoz

II Title III Series: Lecture notes in mathematics

or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photo- copying machine or similar means, and storage in data banks

Under w 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to

be determined by agreement with the publisher

~ by Springer-Verlag Berlin - Heidelberg 1975

Printed in Germany

Offsetdruck: Julius Beltz, Hemsbach/Bergstr

Trang 3

I N T R O D U C T I O N

Unitary representations of the group of all unitary opera-

tors on an infinite dimensional Hilbert space endowed with the

StTong-operator topology have been studied b y I.E.Segsl ([30]) in

connection with quantum physics I n [ 2 ~ ] A.A.Kirillov classified

all irreducible unitary representations of the group of those unl-

t a r y operators which are congruent to the identity operator modulo

compact operators , endowed with the norm-topology Also , in [ 2 ~

the representation problem for the unitary group U(oo) , together

w i t h the assertion that

n e d

The group U(oo)

U(OO) is not a type I group , is mentio-

, well known to topologists , is in a cer-

tain sense a smallest ~ f i n i t e dimensional unitary group , being

for instance a dense subgroup of the "classical" Banach-Lie groups

of unitary operators associated to the Schatten - v o n Neumann

classes of compact operators ([~8 S) Also , the restriction of

representations from U(n+~) to U(n) has several nice features

which make the study of the representations of U ( ~ ) somewhat

easier than that of the analogous groups S U ( ~ ) , 0(oo) , S O ( ~ ) ,

S p ( ~ )

Th.~ study of factor representations of the non locally

compact group U(OO) required some associated C ~- algebra The

C*- algebra we associated to a direct limit of compact separable

groups , G = lira G n , has the property that its factor repre-

Trang 4

s e n t a t i o n s c o r r e s p o n d either to f a c t o r r e p r e s e n t a t i o n s of G e e ,

or to f a c t o r r e p r e s e n t a t i o n s of some G n a n d , since the d i s t i n c -

t i o n is e a s y b e t w e e n these two c l a s s e s , it is of e f f e c t i v e use

t a t i o n s f o r e a c h p r i m i t i v e ideal are the d i r e c t l i m i t s of irredu-

c i b l e r e p r e s e n t a t i o n s of the U ( n ) ' s , b u t there are m a n y other

i r r e d u c i b l e r e p r e s e n t a t i o n s 9

U s i n g the m e t h o d s of C h a p t e r I , we s t u d y ( C h a p t e r IV)

c e r t a i n c l a s s of f a c t o r r e p r e s e n t a t i o n s of U(oo) w h i c h r e s t r i c t e d

t o the U ( n ) ' s c o n t a i n o n l y irreducible r e p r e s e n t a t i o n s in a n t i -

Trang 5

s ~ e t r i c tensors This yields in particular an 4nfinity of non-

equivalent type III factor representations , the modular group

in the sense of Tcmita's theory (~32]) with respect to a certain

cyclic and separating vector having a natural group interpretation

Analogous results are to be expected for other types of tensors

The study of certain infinite tensor products (Chapter V)

gives rise to a class of type I I ~ factor representations As in

the classical theory for U(n) , the ccmmutant is generated by a

representation of a permutation group In fact it is the regular

representation of the ~nfinite prmutation group S(oo) which

generates the hyperfimite type II~ factor Other examples of

type lloo factor representations are given in w 2 of Chapter V

Type II~ factor representations of U(oo) were studied

in (E3@],E35 ]) and the results of the present work were announced

in ( 38]

Concluding , from the point of view of this approach ,

the representation problem for U(oo) seems to be of the same

kind as that of the infinite anticommutation relations , though

"combinatoriall~' more complicated Of course , a more group -

theoretical approach to the representations of U ( ~ ) would be

of much imterest

Thamks are due to our colleague Dr H.Moscovici for drawing

our attention on E2~S and for useful discussions

The authors would like to express their gratitude to Mrs

Trang 6

S a n d a S t r ~ t i l ~ f o r her k i n d h e l p in t y p i n g the m a n u s c r i p t

The g r o u p U ( ~ ) is the d i r e c t l i m i t of the u n i t a r y g r o u p s

U ( ~ ) c U(2) c c U(n) c , e n d o w e d w i t h the d i r e c t l i m i t

t o p o l o g y L e t H be a c o m p l e x s e p a r a b l e H i l b e r t space a n d [ e n l

a n o r t h o n o r m a l b a s i s T h e n U ( o o ) c a n be r e a l i z e d as the g r o u p

of u n i t a r y o p e r a t o r s V on H s u c h that Ve n = e n e x c e p t i n g

o n l y a f i n i t e n u m b e r of i n d i c e s n S i m i l a r l y , we c o n s i d e r GL(oo) the d i r e c t l i m i t of the GL(n) ' s

B y U & ( ~ o ) we denote the g r o u p of u n i t a r i e s V on H s u c h

t h a t V - I be n u c l e a r , e n d o w e d w i t h the t o p o l o g y d e r i v e d f r o m the m e t r i c d ( V ' , V " ) = Tr(IV' - V" I ) A l s o , b y U(H) a n d GL(H)

w e d e n o t e all u n i t a r y , r e s p e c t i v e l y all i n v e r t i b l e , o p e r a t o r s on the H i l b e r t space H

Trang 7

The bibliography listed at the end contains, besides references to works directly used, also references to works we felt related to our subject We apologize for possible omissions

Trang 8

C O N T E N T S

C H A P T E R I O n t h e s t r u c t u r e of A F - a l ~ e b r a s a n d t h e i r

r e p r e s e n t a t i o n s I

w I D i a g o n a l i z a t i o n of A F - a l g e b r a s 3

w 2 I d e a l s i n A F - a l g e b r a s 20

w 3 9 S o m e r e p r e s e n t a t i o n s of A F - a l g e b r a s 31

C H A P T E R II T h e C * - a l g e b r a a s s o c i a t e d to a d i r e c t l i m i t o f c o m p a c t ~ 57

w I T h e L - a l g e b r a a s s o c i a t e d t o a d i r e c t l i m i t of c o m p a c t g r o u p s 87

w 2 T h e A F - a l g e b r a a s s o c i a t e d t o a d i r e c t l i m i t of c o m p a c t g r o u p s a n d its d i a g o n a l i s a t i o n 62

C H A P T E R III T h e p r i m i t i v e i d e a l s of A ( U ( o o ) ) 81

w I T h e p r i m i t i v e s p e c t r u m of A ( U ( | )) 81

w 2 D i r e c t l i m i t s of i r r e d u c i b l e r e p r e s e n t a t i o n s 93

C H A P T E R I V T y p e I I I f a c t o r ,rep,resentations o f U ( o o ) i n a n t i s v m m e t r i c t e n s o r s 97

C H A P T E R V S o m e t y p e IIco f a c t o r , r e P r e s e n t a t i o n s of U ( o 0 ) 9 127 w 1 , I n f i n i t e t e n s o r p r o d u c t r e p r e s e n t a t i o n s , 127

w 2 , O t h e r t y p e IIoo f a c t o r r e p r e s e n t a t i o n s ,., 146

A P P E N D I X : I r r e d u c i b l e , r e p r e s e n t a t i 0 n ~ of U ( n ) , 155

N O T A T I O N I N D E X , ~ 160

S U B J E C T I N D E X , 164

B I B L I O G R A P H Y o~ 166

Trang 9

Our a p p r o a c h to the r e p r e s e n t a t i o n p r o b l e m of the u n i t a r y

g r o u p U ( ~ ) r e q u i r e d some other d e v e l o p m e n t s , also w e l l k n o w n

f o r the UH~ - a l g e b r a of c a n o n i c a l a n t i c o m m u t a t i o n r e l a t i o n s

C h a p t e r I is an e x p o s i t i o n of the r e s u l t s we h a v e o b t a i n e d in

t h i s d i r e c t i o n , t r e a t e d in the general c o n t e x t of AF - algebras

We shall use the b o o k s of J D i ~ n i e r (~ 6 ],[ T ]) as r e f e -

r e n c e s for the c o n c e p t s a n d r e s u l t s of operator a l g e b r a s

If MT , M 2 , are subsets of the C * - algebra A ,

Trang 10

the l i n e a r m a n i f o l d (resp the c l o s e d l i n e a r m a n i f o l d ) s p a n n e d

b y ~ _ ~ M n A l s o , for a n y s u b s e t M of A , we shall denote

r a t h e r t e d i o u s v e r i f i c a t i o n s

A n a p p r o x i m a t e l y f i n i t e d i m e n s i o n a l C ~- a l g e b r a ( a b r e v i a -

t e d A F - a l g e b r a ) is a C - a l g e b r a A such that there e x i s t s

a n a s c e n d i n g s e q u e n c e l & n } n >Io of f i n i t e d i m e n s i o n a l C ~- sub-

a l g e b r a s in A w i t h

Trang 11

e l e m e n t s of A , r e l a t e d to a suitable " system of m a t r i x units

f o r the d i a g o n a l i z a t i o n of A w i t h r e s p e c t to C " , such that

Trang 13

T h e r e f o r e , in p r o v i n g the inductive step , we m a y assume

t h a t An+ ~ a n d A n are b o t h f a c t o r s But t h e n it is c l e a r t h a t

An+ ~ = A n ~ ( A ~ ~ An+~) , Cn+~ = C n ~ D n + ~

a n d , since C n (resp Dn+~) is a m a s a , in A n (resp in

A'n ~ An+h ) ' it f o l l o w s o b v i o u s l y that Cn+ ~ is a m a s a , in

An+ ~ 9

(iii) The e q u a l i t y we have to prove is obvious for k = o

A s s u m i n g t h a t it is true for a f i x e d k , we get

C n + k + ~ = ~ C n + k , D n + k + T ~

= < C n , ~ (~ Cn+ k , D n + k + [ )

c C n + k + ~

w h i c h p r o v e s the d e s i r e d e q u a l i t y b y i n d u c t i o n on k

Trang 14

c o m p l e t n e s s a n d in order to e s t a b l i s h some n o t a t i o n s , we shall

p r o v e it We m a y suppose that A is a f a c t o r T h e n {qil

i I

is a c o m p l e t e set of m u t u a l l y e r t h o g o n a l a n d e q u i v a l e n t m i n i m a l

Trang 15

projections of A n , thus , for a fixed index i o ~ I n , we can

find partial isometries v i ~ A such that

( ~ ) v~vi = qi o ' viv~ = qi ' vi = viqio qivi ; i a I n i then an arbitrary element x E A n is of the form

F

(2) x = i , j ~ i n ~ viv~ ' lij ~ ~ "

If ~ : A n ~ C n is a conditional expectation , then

~ ( v i v j ) ~ ( q i ( v i v j ) q j ) = q i q j ~ ( v i v ~ ) = Jij qi ' thus

~ ( X ) = ~ ~ i j ~ ( v i v ~ )

l,J Moreover ,

I.~.3 Now denote by ~pj~ j ~ j n the minimal projections

of Dn+ i Since Cn+ ~ = ~ C n , D n + ~ , it follows that the mini-

mal projections of Cn+ i are the non-zero qipj , i m I n , j EJn

Since Pj ~ Dn+ i C A ~ , for each x E A n we have

Pn+~l An = Pn I A~

Trang 17

a s in the p r o o f of I ~ ~ ( i i )

(ii) S i n c e P n + k ( X ) = P n ( X ) = x for x ~ C n , we have

P ( x ) = x for x ~ k_# C n a n d , b y the c o n t i n u i t y of P , w e

n:o infer P(x) = x f o r all x g C Thus , P : A ~ C is a

Trang 19

P r o o f (i) A g a i n , we shall assume t h a t A is a f a c t o r

a n d use the n o t a t i o n s i n t r o d u c e d in S e c t i o n I.~.2 We d e f i n e

Trang 20

II%(Yk - yll : II (Yk- y II IIy - yll

lira IIQn(Yk) - Yll = 0 But Q ~ ( y k ) E A~ a A n + k , hence

(ii) By C o r o l l a r y I.~.5 we have P ( A ~ N An+ k ) = A ~ N Cn+ k

a n d using (i) we obtain

Proof By Lemma I.I.6 it is sufficient to prove the

e q u a l i t y of the statement only for x ~ A n and y m A~ ~ An+k "

Thus , f i x n >i o , k >i c , denote b y (qil i m i n the

m i n i m a l p r o j e c t i o n s of C n and b y IPJ) J ~ Jn,k the minimal

p r o j e c t i o n s of A~ ~ Cn+ k By Lemma I.~.~.(iii) it follows that the non-zero qip j , i g I n , j E Jn,k ' are the minimal p r o j e c - tions of Cn+ k We define

P n + k / n (z) = 7 pjzpj ~ (A~ ~ Cn+k)' for all z ~ A

Trang 21

Pn+k/n(Xy) = x Pn+k/n(y) for all

As in Sections I.~.2.,I.~.3 we see that Pn+k/n

conditional expectation of A~ f% An+ k with respect to

and

Pn+k/nl A ~ A n k : Pn+kl A~ f] A~+ k 9

Moreover , for any z ~ A ,

z)) = P n ( ~ p j z p j ) Pn(Pn+k/n (

It can be proved that

= <~A~ ~ C n + k , A~+ k (ACn+k+ ~ )

Trang 22

I.~.8 In this s e c t i o n we shall d e t e r m i n e suitable systems

k ~ K n there is a system of m a t r i x u n i t s for the f a c t o r ~ w i t h

r e s p e c t to the m a s a ~ ~ C n , that is a set

S u c h a system is c o m p l e t e l y d e t e r m i n e d once we c h o o s e an index

P R O P O S I T I O N The systems ~eij ; i,j ~ I n ,

m a t r i x units for A w i t h r e s p e c t t o C n c a n be c h o s e n such

t h a t , f o r e v e r y n >i o , the f o l l o w i n s a s s e r t i o n h o l d s :

^(n+~)

_(n) is a sum of some ~rs

Trang 23

re(n)

Proof We proceed by induction Let ~ iK12 J be the

be some system of matrix units of A~ (] Am+ T with respect to

~ u : C B c i ~ u*cu E C The kernel of this homomorphism is easily seen to be

~ C : ~ 1 ~ n ~ C

n : o

r (n) k k ~ n )

For given systems of matrix units ~eij ; i,j E I n ,

satisfying condition ($) of I.&.8., we shall construct a sub-

Let U n be the subgroup of Q J [ n consisting of all

Trang 24

direct product of % A N C by U Moreover , U and P awe iso-

morphic and since

A = l.m.(UnC n) = l.m.(CnU n)

A = c l m ( U C ) = c I m ( C U )

I.~.~O We now denote by ~-L the Gelfand spectrum of the

commutative C*- algebra C Then I ~ is a compact topological

space , C ~- C(IO_) and we m a y view P as a group of homeomor-

phisms of ~ Thus , we obtain a topological dynamical system

(.0_, P)

associated to the given AF - algebra A

Consider the Hilbert space ~ 2 ( ~ ) with orthonormal basis

b t ~ ~ } and denote by ( I- ) the scalar product

Each function f e C(~'I) defines a "multiplication opera-

Thus , U n C U n + ~ and putting

U = O U

n=o

it follows that U is a subgroup of q~ and

and that ~ n is the semi-direct product of ~ n f~ Cn b y U n

Trang 25

f : C(il) , and V ~ , ~ P

THEOREM Given an arbitrary AF - algebra A there exist

a) g m a s a C in A ,

b) ~ conditional expectation P o_~f A with respect t_~o C ,

c) a subgroup U of the unitar~ ~roup of A ,

such that

(i) u* C u = C for all u ~ U ,

(ii) P(u*xu) = u*P(x)u for all u ~ U , x ~ A ,

(iii) A = c.l.m.(UC) = c.l.m.(OU)

Moreover , !e~ ~ be She Gelfand ~ t r u m of C and

b_~e the ~roup o_~fhomeomorphisms o _ ~ f ~ induced b y U Then there

Trang 26

in the p r e c e d i n g Sections It r e m a i n s to c o n s t r u c t a * - isomor-

p h i s m b e t w e e n A and Ẵ)-, P ) w i t h the stated p r o p e r t y

F i x n ~ o denote b y ~ ( n ) the image of uĩ) g U n C U

a n d , identifying an element of A with its image under ~(n) and

a point of ~ w i t h the c o r r e s p o n d i n g vector in ~2(k~) , we have

h a v i n g the d e s i r e d p r o p e r t y

Q.ẸD

Note that , although the concrete C*- algebra Ăk~L, r )

a n d its conditional e x p e c t a t i o n w i t h respect to C ( ~ ) d e p e n d

o n l y on the choice of the minimal projections , the c o n s t r u c t e d

9 - isomorphism b e t w e e n A and A ( ~ , P ) is e s s e n t i a l l y b a s e d

Trang 27

on a suitable choice of the complete systems of matrix units

I ~ ~ For later use , we shall give a convenient

description of ~ as well as of the action of ~ on ~

The Gelfand spectrum ~ - n of the commutative C *- algebra

can be identified with the finite set ~q(~)~

i E I n the minimal projections of C n The map ~ n+~ ~ ~ n cor-

responding to the inclusion map C > Cn+ T associates to

every minimal projection of Cn+ ~ the unique minimal projection

of C n containing it Since the C*- algebra C is the dlwect

limit of the C*- algebras C n following the inclusion maps ,

it follows that ~ can be identified with the topological inverse

limit of the discrete spaces ~-~n following the maps

-CAn+ ~ ~ Kln 9

Therefore , the points of ~ can be represented as

sequences

t =

where q(~) is a minimal projection of C n , for all n >i o

A point t ~ ~ is adherent to a set ~ c ~'~ if and

only if , for each n >i o , there exists s a oo such that

Trang 28

In this s e c t i o n we s t u d y the c l o s e d two s i d e d ideals of an

A F - a l g e b r a A and we i n t e r p r e t the r e s u l t s in t e r m s of the t o p o -

Trang 29

T h e n for a n y c l o s e d two s i d e d ideal J o f A w e h a v e

n = o

P r o o f The c a n o n i c a l * - h o m o m o r p h i s m s A n / J N A n ~ A/J are injective a n d t h e r e f o r e isometric F o r any x e J there is

a s e q u e n c e x n ~ A n w i t h lim llXn - xll = 0 It f o l l o w s t h a t lim Iix~/Jii = o , h e n c e lim llXn/JN Anl I = 0 T h u s there is a

s e q u e n c e Y n ~ J O A n such that lim llXn - Yn~ = 0 and this

a r g u m e n t s (~ 6 ]) , we shall prove the f o l l o w i n g

L E N ~ A Le ~t I b_~e ~ U - stable c l o s e d ideal o f C The _~n

J(I) = I x ~ A ; P ( x * x ) ~ I 3 i_~s ~ c l o s e d t w o s i d e d ideal of A

P r o o f C l e a r l y , J(1) is a c l o s e d s u b s e t of A

Since (x + y) (x + y) ~ 2 ( x * x + y~y) , f r o m x , y ~ J(I)

w e infer

P ( ( z + y) (x + y ) ) ~ 2(P(x~x) + P ( y y)) ~ I ,

Trang 32

R e m a r k t h a t the c o r r e s p o n d e n c e s J ~ w Ij a n d I ~ J(I) are i n c r e a s i n g w i t h r e s p e c t to i n c l u s i o n

1.2.5 C O R O L L A R Y Let J~ and J2 be c l o s e d two s i d e d

i d e a l s of A T h e n

J~ = J 2 r J~ ~ C = J2 n C

P r o o f F o l l o w s o b v i o u s l y f r o m T h e o r e m 1.2.@

Q E D 1.2.6 C O R O L L A R Y Let J b e ~ c l o s e d two s i d e d ideal o_~f A T h e n

J = the c l o s e d two s i d e d ideal of A ~ e n e r a t e d b_~ J ~ C

P r o o f D e n o t e b y J~ the c l o s e d two s i d e d ideal of A

g e n e r a t e d b y J • C C l e a r l y , J~ ~ J S i n c e

J ~ O C c J ~ C c J ~ O C , the e q u a l i t y J = J[ f o l l o w s f r o m 1.2.5

Trang 33

The proof will be given in Section 1.2.[0

Remark that Theorem 1.2.4 further implies

This correspondence is decreasing with respect to inclusion

The closed ideal I of C is P - stable if and only if

the subset ~ I of iO_ is P - stable Owing to Theorem 1.2.$

it follows that

J ; ~ ~176 C

is a decreasing one-to-one correspondence between the closed two

sided ideals of A and the ~ - stable closed subsets of ~

A closed two sided ideal J of A is called primitive

if it is the kernel of an irreducible representation of A It is

known ( [ 5 S ) that J is primitive if and only if , for any closed

two sided ideals J~ and J2 of A , the following implication

holds :

Trang 34

o_~f _O_ c o i n c i d e w i t h the c l o s u r e s of the [1 - orbits

The set o J j N C a s s o c i a t e d to a c l o s e d two sided ideal J

of A h a s a simple d e s c r i p t i o n in the terms e x p l a i n e d in S e c t i o n

I ~ ~ N a m e l y , bet ~[ be a r e p r e s e n t a t i o n of A w i t h kernel J

T h e n the set o O j O C c o n s i s t s of all p o i n t s t e n h a v i n g the

p r o p e r t y

Trang 35

P r o o f I n d e e d , suppose the c o n t r a r y h o l d s Then , for

e v e r y k > n , there exist m u t u a l l y orthogonal c e n t r a l p r o j e c t i o n s

are p o s i t i v e o p e r a t o r s c o n t a i n e d in the c e n t e r of the v o n N e u m a n n

f a c t o r g e n e r a t e d b y T[(A) in L(H) , t h e r e f o r e t h e y are scalar

o p e r a t o r s

P~ = X~ , P2 : h a ; ~ ' ~ 2 #- [ 0 , ~ )

N o w f r o m (~) we ~ f e r ~ + ~ 2 = ~ , w h i l e (2) implies t h a t

Trang 36

~ = ~ 2 = 0 This contradiction proves the Lemma

Q.E.D

(i) 7[(p(~) p(n)) ~ o for all n > ~ ;

there exists k >/ n such that UI (p(k)q) ~ 0

Proof Indeed , let us write the set

~_~ ~q ; q is a minimal projection of C n and ~[(q) # 0 I n={

as a sequence le{ , e 2 , , ej , "''I Owing tb Lemma ~ , we

find by induction a sequence Ip(kj)l of minimal central projec-

Clearly , this sequence can be refined up to a sequence

having the stated properties

~p(n) 1

Q.E.D

sequence ~p(n) 1 as in Lemma 2 The condition (i) satisfied b y

Trang 37

This m e a n s that

the n o t a t i o n b e i n g as in S e c t i o n I % ~ Therefore , p(n) is the

c e n t r a l support of the m i n i m a l p r o j e c t i o n ~(n) in A n Since

t o qI(p (n)) ~ 0 , it f o l l o w s that

(n)~

T [ ( q to- ~ 0 for all n ~ ~

Thus , t o s co and c o n s e q u e n t l y r ( t o ) c oo

N o w consider t ~ co and f i x n ~ ~ The c o n d i t i o n (ii)

s a t i s f i e d b y the p(n) , s shows that there exists k n ~ n such

that

(kn)q(

Therefore , there is a minimal p r o j e c t i o n r

c e n t r a l support p in Akm such that

Trang 38

1 2 ~ The p r i m i t i v e s p e c t r u m Prim(A) of A is the set

of all p r i m i t i v e ideals of A e n d o w e d w i t h the h u l l - k e r n e l topo-

l o g y The p r e c e d i n g r e s u l t s s h o w that Prim(A) c a n be i d e n t i f i e d

w i t h the set of all c l o s u r e s of ~ - o r b i t s D e f i n i n g an e q u i v a -

l e n c e r e l a t i o n " N " on ~ b y

t~ N t 2 < ~ p ( t & ) = ~ ( t 2) ,

Trang 39

it can be easily verified that Prim(A) is homeomorphic with

the quotient space ~ / ~ endowed with the quotient topology

1.2.~2 In his approach to AF - algebras based on diagrams,

0.Bratteli has also studied the closed two sided ideals Instead

of considering the intersections of the ideals w i t h the m.a.s.a

C , O.Bratteli considers the intersections w i t h the smaller sbelian

subalgebra generated b y the centers of the A n ' s , the results

b e i n g quite similar (see K ~ S, 3.3 , 3.8 and ~ S , 5.~.) 9 His

approach is particularly well adapted for problems such as the

determination of all topological spaces which are spectra of AF -

algebras ( s e e ~ S, 4.2 a n d S 3 S)

w 3 Some representations ~ AF - algebras

We consider an AF - algebra A = ~ A n T together with

n=o the m.a.s.a C , the conditional expectation P : A ) C and

the group U as in w 9 Let ( ~ , ~ ) be the associated topo-

logical dynamical system and ~ the sigma-algebra of Borel sub-

sets of ~ 9 In this section we shall study two kinds of repre-

sentations of A , $I~ and ~ , associated with ~u_ quasi-

invariant measures ~ on the Borel space ( ~ , ~ ) 9

Trang 40

A positive measure on ~ will always mean a positive

is a positive measure of mass & , i.e 5 ( ~ ) = ~ Two positive

null-sets

Then ~ is ~ - invariant (resp [~- &uasi-invariant) if ~ = (resp ~ equivalent to ~ ) for all ~ E P The positive measure

is ~ - ergodic if the only ~ - invariant elements of ~ , 5 ) are the scalars 9

Then ~ can be regarded as a state of the commutative C*- algebra

C -~ C(~-2) and therefore

bert space H 5 and a cyclic unit vector ~ r H~ for ~ p such that

the bicommutant notation , T[~(A)" 9

Ngày đăng: 27/05/2022, 13:57

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN