1. Trang chủ
  2. » Khoa Học Tự Nhiên

Lecture notes in mathematics

184 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Analytic Arithmetic in Algebraic Number Fields
Tác giả B.Z. Moroz
Người hướng dẫn F. Hirzebruch
Trường học Max-Planck-Institut für Mathematik, Universität Bonn
Chuyên ngành Mathematics
Thể loại lecture notes
Năm xuất bản 1986
Thành phố Berlin
Định dạng
Số trang 184
Dung lượng 4,54 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Lecture Notes in Mathematics Subseries: Mathematisches Institut der Universit~.t und Max-Planck-lnstitut fSr Mathematik, Bonn - vol... Analytic arithmetic in algebraic number fields..

Trang 1

Lecture Notes in

Mathematics

Subseries: Mathematisches Institut der Universit~.t und Max-Planck-lnstitut

fSr Mathematik, Bonn - vol 7

Trang 2

Author

B Z M o r o z

Max-Planck-lnstitut fLir Mathematik, Universit~.t Bonn

Gottfried-Claren-Str 26, 5 3 0 0 Bonn 3, Federal Republic of G e r m a n y

M a t h e m a t i c s S u b j e c t Classification (1980): 11 D 5 7 , 11 R 3 9 , 11 R 4 2 , 11 R 4 4 ,

11 R 4 5 , 2 2 C 0 5

I S B N 3 - 5 4 0 - 1 6 7 8 4 - 6 Springer-Verlag Berlin H e i d e l b e r g N e w York

I S B N 0 - 3 8 ? - 1 6 7 8 4 - 6 Springer-Verlag N e w York Berlin H e i d e l b e r g

Library of Congress Cataloging-in-Publication Data Moroz, B.Z Analytic arithmetic in algebraic number fields (Lecture notes in mathematics; 1205) "Subseries: Mathematisches lnstitut der Universit&t und Max-Planck-lnstitut fur Mathematik, Bonn -vol ? " Bibliography: p Includes index

1 Algebraic number theory I Title I1 Series: Lecture notes in mathematics (Springer-Verlag; 1205 QA3.L28 no 1205 [QA247] 510 [512'.74] 86-20335

ISBN 0-38?-16784-6 (U.S.)

This work is subject to copyright All rights are reserved, whether the whole or part of the material

is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks Under

§ 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to "Verwertungsgesellschaft Wort", Munich

© Springer-Vertag Berlin Heidelberg 1986

Printed in Germany

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr

2146/3140-543210

Trang 3

the h i s t o r y of this p r o b l e m ; o n e m a y r e g a r d this n o t e as a r ~ s u m ~ of

C h a p t e r II, if y o u like) C h a p t e r III d e s c r i b e s a p p l i c a t i o n s of t h o s e

M a x - P l a n c k - I n s t i t u t fur M a t h e m a t i k (Bonn) W e are g r a t e f u l to the

D i r e c t o r of the I n s t i t u t e P r o f e s s o r F H i r z e b r u c h for his h o s p i t a l i t y

Trang 4

the M a t h e m a t i s c h e s Institut U n i v e r s i t ~ t Z~rich, w h e r e parts of the

m a n u s c r i p t have b e e n prepared

Bonn-am-Rhein, im M~rz 1986

Trang 6

{xIP(x)} is the s e t of o b j e c t s x s a t i s f y i n g the p r o p e r t y P(x)

c a r d S, or s i m p l y IsI, s t a n d s for the c a r d i n a l i t y of a f i n i t e s e t S;

Trang 8

§I O n the m u l t i d i m e n s i o n a l a r i t h m e t i c i n the s e n s e of E H e c k e

Trang 11

{x;A,T) = c a r d { P i P 6 A N So, f{p) E Y, IpI < x}

Trang 13

Let x 6 Jk and let Xp be the p-component of x, we set then

IIxll = H IIXpll By the p r o d u c t formula,

is known to be compact The group X* can be identified with the sub-

group {xlx 6 Jk' Xp = 1 for p E S o } of Jk' so that ~ + embedded

diagonally in X* m a y be regarded as a subgroup of C k It follows

then that

There is a natural h o m o m o r p h i s m id: Jk ÷ I(k) of Jk on I(k) given

by the equation

Trang 14

PES o

L e t ; 6 Ck' let ~ ( ~ ) b e the c o n d u c t o r of ~ (defined as, e.g.,

in [93], p 133) and let ~ = ( ~ ) be set of those primes in S 1 at

w h i c h ~ is ramified; w r i t e ~ ( ; ) = { ~ ( ; ) , £ ~ ( ~ ) } One c a n d e f i n e

a c h a r a c t e r Xp on I ( ~ ( ~ ) ) by the e q u a t i o n

X ~ ( ~ ) = ~(x) for ~ e I ( ~ ( ~ ) ) , x 6 id-1(0£),

if one r e g a r d s p as a c h a r a c t e r of Jk (trivial on k~) It follows

from d e f i n i t i o n s that Xp is w e l l d e f i n e d since p is c o n s t a n t on

i d - 1 ( ~ ) for ~ 6 I ( ~ ( ~ ) )

P r o p o s i t i o n 2 The f u n c t i o n ~ ~ X ~ ( ~ ) is a p r o p e r g r o s s e n c h a r a c t e r

and ~ ( X ~ ) = ~(~); it s a t i s f i e s (5) w i t h ~ = ~(~) and l equal

to the r e s t r i c t i o n of ~ to X ~ (regarded as a s u b g r o u p of Jk ), in

p a r t i c u l a r , X~ is n o r m a l i s e d if and only if ~ + ~ Ker g If X is a

p r o p e r g r o s s e n c h a r a c t e r , there is one and only one ~ in Ck such that

P r o p o s i t i o n I d e f i n e s a f i b r a t i o n of gr(k) over the set of (generalised)

conductors L e t X 6 gr(k) and s u p p o s e that X s a t i s f i e s (5) w i t h

of the s h a p e (6); we call a p , t p a p p e a r i n g in (6) e x p o n e n t s of X and

Trang 17

L e t G be a c o m p a c t g r o u p a n d let p b ~ the H a a r m e a s u r e o n G nor-

Trang 18

But y 6 H if and only if uyu -I 6 H for u 6 H, t h e r e f o r e ~ ( u y u -I)

= ~(y) w h e n e v e r u 6 H Thus (4) gives

Trang 21

the r e p r e s e n t a t i o n s O,8 and

it is e n o u g h to show that

Ci' respectively In view of lemma 1,

n

G G~G = Z ~i "

one obtains from (9) an e q u a t i o n

(Ci)~G(x) = f d~ (u)$ (uxu -1) ~((wtiv)uxu -I (wtiv)-l)

be the c h a r a c t e r i s t i c functions of A and B, and c o n s i d e r an i n t e g r a l

Ji(x) := f fA (Y) fB (z) • ((YtiZ) x (YtiZ)-I) d~ (Y) dP (z) •

Trang 23

for I ~ j ~ r For j = I e q u a t i o n (14) is obvious

holds for some j in the i n t e r v a l I < j < r-1 Since

Suppose (I 4)

IndG(j) (X (j)) @ IndGj+ I (Xj+ I) = IndG(j+1) (X (j+1))

by P r o p o s i t i o n 2 (in v i e w of the c o n d i t i o n H(J)Jj+ I = G), e q u a t i o n (14) implies that

Pl @ "'" ~ Pj+I = IndG('+1 (x(J+I))

H 3 )

This proves (14) for any j, in particular, we o b t a i n (13)

If G is a finite group, the f o l l o w i n g r e l a t i o n holds:

E^ X ( g l ) x ( g 2 ) = I O w h e n gl ~ {g2 }

l{gl}l

w h e r e {g} = {hgh-11h E G} denotes the conjugacy class of g in G

T h e o r e m I Every c h a r a c t e r of a finite g r o u p is a linear c o m b i n a t i o n

of m o n o m i a l characters

Trang 24

Proof See, e.g., [83], §10

Trang 25

d e t ( l + A t ) i I A A i n = (I+At) ZI ^ "'" ^ (1+At) i n

a n d

( 1 + A t ) £ j = ( 1 + a j t ) £ j , I ! J ! n

Trang 26

L e t K b e a f i n i t e G a l o i s e x t e n s i o n of k The r e l a t i v e W e i l g r o u p

W(KIk) is d e f i n e d as the e x t e n s i o n of G(KIk) b y C d e t e r m i n e d b y

the f u n d a m e n t a l class of class f i e l d theory If K ) K' a n d K' Ik

Trang 27

dim p < [K:k] (5)

1 ] = [K:k ]

Proof Since W I (KIk) is compact and [W I (KIk) :C K

(5) follows from lemma 2.3

of W(KIk) This subgroup is denoted by W(KpIkp) ; thus W(K~Ikp)

G(K;Ikp) One defines two subsets of W(K~Ikp):

l(p) = {~Io6w(K~Ikp) , so = ~(~a) for e 6 v;}

and

~p = {(~I ~ E W(K~Ikp), C~ (~ - eIPI(~a) for c~ E v;}

Let us recall that

Trang 28

=

V p {xlx 6 V, ~ ( T ) X = X for T 6 l(p)}, p 6 So(k),

of V We say that p is u n r a m i f i e d at p if V = V

P

p r o p o s i t i o n 2 L e t p E R(KIk) and let p 6 So(k) If p is un-

r a m i f i e d in Klk and if U~ ~ Ken p w h e n e v e r ~IP, ~ 6 So(K), then

p is u n r a m i f i e d at p Here U ~ d e n o t e s the s u b g r o u p of units in

K~ r e g a r d e d as a s u b g r o u p of C K

Proof L e t T 6 1(p) T h e n T H ~(~) for ~ e v; D K~; since K~Ik p

is unramified, w e h a v e s T = ~ for e 6 K~ Thus

By v i r t u e of local class field theory, it follows from (6) that l(p) =

U~; since U ~ ~ Ker p, w e c o n c l u d e that p is u n r a m i f i e d at p

N o t a t i o n I L e t p 6 R(k) We denote by So(P) the set of those

primes in So(k) at w h i c h p is ramified

P r o p o s i t i o n 3 The set So(P) is finite for any p in R(k)

Proof S u p p o s e that p C R(KIk) The r e s t r i c t i o n of p to C K is a

c o n t i n u o u s h o m o m o r p h i s m of C K in GL(n,~) for some n in ~ ; there-

fore there is a finite s u b s e t S3(P) of primes in So(K) such that

U ~ ~ Ker p for ~ 6 S o ( K ) \ S 3 ( P ) (7)

By P r o p o s i t i o n 2 and (7),

So(P) _~ { P I ~ E S o ( k ) , ~ I P for some ~ in S3(@)}

Trang 30

i (p,t) = K i (p',tf(~)),

where ~ range over primes in So(k') lying above p, and Nk,/k ~ =

p ; here Ik is a finite field extension

Proof Assertion 2) is a reformulation of the Artin's reciprocity law: equation (11) follows from the definitions when one recalls that the inertia subgroup and the Frobenius class in G(k~Ikp)_ may be identified with Up and ZUp in Ck, where ~ C k ~ and w (~) = I Let us

where pp(~p) is defined as the restriction of pp(T) for T 6 ~p to

Vp, the subspace of l(p)-invariant vectors in the representation space

of pp If, in particular,

pp = p l W ( K ~ ikp) for p 6 R(KIk),

then £p(pp, t) = £p(p,t) independently of the choice of ~ above p

(I) and _(2) of W ( K ~ Ikp) we observe

that

V (1)p • V (2)p = Vp,

Trang 31

w h e r e Vp, V (I) and V (2) denote the subspaces of ] (p)-invariant

vectors in the r e p r e s e n t a t i o n spaces of OP'P (1)p and PP(2) , respec-

(I) ~ (2) T h e r e f o r e tiveiy; pp:= pp pp

Zp(p(1)p • pp(2),t) = £p(p;t),t)lp(p;2),t) (13)

(i) = Pi I (K~ ?I i = Identity (10) is a special case of (13) w i t h Pp W kp)'

I, 2 To prove (I 2) w e need the following lemma

Proof L e t t (~) = I (~) n W ( K ~ Ik~) be the inertia s u b g r o u p of

W ( K ~ Ik~) and let

e 6 e n=1

L e t

Trang 33

for any y in W ( K ~ Ikp) and any (finite d i m e n s i o n a l continuous) repre-

A n easy c a l c u l a t i o n shows that

Trang 34

Proof See [87], p 10, and [91]

We r e m a r k t h a t Ro(Klk) ~ Ro(k) N R(KIk) L e t p 6 R(k) and let

Trang 36

29

= Z 8 Ind (K k) _ 7 ~ indG(K )~j

for some finite extensions kj and g r o s s e n c h a r a c t e r s ~j in gr(kj),

I < j < m It follows from (11) that Pl (Op) = XI (p) w i t h X I = tr Pl'

Trang 41

If If(b+it) l < 1

> O, @ + a > O,

a n d

t h e n If(a+it) i < A I Q + a + i t l ~ w h e n e v e r t E ] R w i t h

b - R e u if(u) I < (AI~+ul~) b - a for u • S ( a , b ) (8)

Trang 43

[~(s,e) l > IQ+s[ Yb -J~ f o r s 6 S(a,b)

M o r e o v e r , ~(s,Q) = O IIm sl c ) for s e S ( a , b ) (with a r e a l c o n s t a n t

Trang 44

M a k i n g use of L e m m a 4 we c o n s t r u c t two functions

w i t h the following properties:

Trang 45

R e l a t i o n s (26), (27), (14), (6) and (18) give:

IF(a+it)[ < (1+q-1) nd(X) , t CIR (28)

S u p p o s e now that p d o e s n ' t c o n t a i n the i d e n t i c a l r e p r e s e n t a t i o n , then

F(s) s a t i s f i e s c o n d i t i o n s of L e m m a 2 w i t h ~ = 0 in v i e w of (25), (28)

and (19) T h e r e f o r e it follows that

IF(s) I < (1+q-1) nd(X) for -q < Re s < l+q (AW 29)

I n e q u a l i t y (17) (with g(x) = O) follows from (29) in view of d e f i n i -

tions (22), (23) and i n e q u a l i t i e s (20) To c o m p l e t e the proof of p r o p o -

s i t i o n 2 we make use of the f o l l o w i n g i n e q u a l i t y (see, [80], p 200,

T h e o r e m 4):

l+sl ( / ~ ~ ll+sl ) n l 2 ) 1 + n - R e S ~ ( l + ~ ) n

[Ck(s)l i 3[T~ 2~ (3o)

in the s t r i p -q < Res < 1+q We w r i t e

Trang 49

Since

ILCs,x)-II ! ~k (Re s) for Re s > I, X 6 gr(k),

it follows from (I) that one can find a p o s i t i v e c o n s t a n t c 2 s a t i s f y i n g three inequalities:

Trang 52

I S - S ( t l ) I < r ( t I)

Trang 53

L e t us r e c a l l that a(x) = IDI'I F ( x ) I a n d d e f i n e

b(X): = K (3+Itp(X) I) K (3+ IaP(X) I+ItP(X) I 2 2 ) (29)

w i t h c 8 > O, w h e r e p ranges over p r i m e ideals of k Here ~ d e n o t e s

the p o s s i b l e e x c e p t i o n a l zero of L(s,x) in the r e g i o n d e f i n e d by (2)

Proof Let, for T > I,

Trang 54

~ T ~ - ds - ~ (s,x) = O ( x I-~(T) (log T ) ~ ( T ) - 2 + X I+~(T) (T~(T))

we remark also that

-I ) (36)

co

Z m=2 ipmi<x

and c h o o s e T to s a t i s f y the e q u a t i o n

lo 9 T

E s t i m a t e s (32), (34), (36) - (38) c o m b i n e d w i t h (30) give:

Trang 55

R I (x,T) = O ( x exp (-c 9 log x )), c 9 > O (39)

log (a (x)b ( X ) ) + ~

M a k i n g use of the p a r t i a l s u m m a t i o n (cf., e.g., [78], p 371, Satz 1.4

w i t h A(x) = Z X(P) loglpl and g(() = (log ()-I) we deduce the

Trang 56

E s t i m a t e (41) follows now from t h e o r e m I a p p l i e d to each of the charac-

ters Xj in (44) w h e n one takes into a c c o u n t r e l a t i o n s (45) and (46)

Trang 59

If A is c h o s e n to b e l a r g e e n o u g h , say

f o l l o w s f r o m (10) t h a t

c(o I ) I/o I log A > ( -~ I) , i t

!log f(s)! < ~ I log A,

a n d (9) f o l l o w s

C o r o l l a r y 2 S u p p o s e t h a t L(s,X) s a t i s f i e s (3.32) T h e n

L 1-s g (Xir] ~

Trang 62

9~4 9 ( U ) d u = I 2~ 9 ei@

Since the c i r c l e Is-~ I = 9/4 is c o n t a i n e d in the s t r i p a ~ Re s ~ b,

Trang 66

w h e r e ~ ranges o v e r the p r i m e divisors in kj E s t i m a t e (30) follows

f r o m P r o p o s i t i o n 3 a p p l i e d to each of the c h a r a c t e r s Xj and r e l a t i o n s

(31), (5.46)

Trang 73

c-(£):=

j=1 +

Trang 74

w i t h

n

b ( x ) : = C(T)n+ -~ iH[a(x) 1_(n+1)-1 (kn+1)-1 b k ( X ) (n+1 )-1 (kn+1) -I

for any n - s m o o t h s u b s e t T; k > I

Proof E s t i m a t e (19) f o l l o w s from (14), (17) and p r o p o s i t i o n I

L e t now J = I (k), H = H ( ~ ) , and let T be d e f i n e d by (I 3)

for any smooth subset T of 9 Here Co(k) and y(n) are e x a c t l y

c o m p u t a b l e c o n s t a n t s d e p e n d i n g on the field k and its degree n, re-

spectively

Secondly, let J = So(k), let H = G(KIk) for a finite Galois

e x t e n s i o n KIk , and let ~ be the torus d e f i n e d by (1.3) We d e n o t e

by ( K ~ ) the A r t i n symbol c o r r e s p o n d i n g to the e x t e n s i o n K[k and

recall that, for p 6 S (k),

Ngày đăng: 27/05/2022, 13:53