1, Erevan 44, USSR Consulting Editor D.Yu, Grigorev Leningrad Branch of the Steklov Mathematical Institute Fontanka 27, 191011 Leningrad, D-11, USSR Mathematics Subject Classification 1
Trang 2S.S Agaian
Computer Center of the Academy of Sciences
Sevak str 1, Erevan 44, USSR
Consulting Editor
D.Yu, Grigorev
Leningrad Branch of the Steklov Mathematical Institute
Fontanka 27, 191011 Leningrad, D-11, USSR
Mathematics Subject Classification (1980): 05XX; 0 5 B X X
ISBN 3-540-16056-6 Springer-Verlag Berlin Heidelberg New York Tokyo
ISBN 0-387-16056-6 Springer-Verlag New York Heidelberg Berlin Tokyo
This work is subject to copyright All rights are reserved, whether the whole or part of the material
is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks Under
§ 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to "Verwertungsgesellschaft Wort", Munich
© by Springer-Verlag Berlin Heidelberg 1985
Printed in Germany
Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr
2146/3140-543210
Trang 5a l s o a p p e a r e d : the w o r k of S c a r p i s (1898) p r o v i n g t h a t if p = 3 ( m o d 4)
or p = l ( m o d 4) is a p r i m e n u m b e r t h e n t h e r e is an H a d a m a r d m a t r i x of
o r d e r p+1 a n d p+3, r e s p e c t i v e l y ; the w o r k of H a d a m a r d (1893) w h e r e
n the f o l l o w i n g r e s u l t in p a r t i c u l a r is stated: if A = { a i , j } i , j = 1 ,
lai,jl ~ M , ai, j are r e a l n u m b e r s for a n y i, j, t h e n the a b s o l u t e v a -
t o r i a l p r o b l e m s is the lack of u n i f i e d m e t h o d s for c o n s t r u c t i o n of H a -
d a m a r d m a t r i c e s of o r d e r 4n for all n The k n o w n m e t h o d s of c o n s -
Trang 15(2.9)
O n t h e o t h e r h a n d L a g r a n g e t h e o r e m [ 1 2 0 ] s h o w s t h a t e v e r y p o s i t i v e
n u m b e r is r e p r e s e n t a b l e a s t h e s u m o f 4 s q u a r e s o f i n t e g e r s ; m o r e o v e r
Trang 17a 2) if [qi o ]/2 is odd, then
1!I)i = [m-qi-V(i)-1]o /4, L(2)=i [m+qi+V(i)-1]o /4
I + 2 V ~ I ) + 2 V ~ I ) + 2V~I) = + I
Hence, we have from (2.13) and (2.14
V~ I) + V~I) + V~I = -I,
Trang 26T H E O R E M 2•5 " Let { W ~ 1 i=I be a W i l l i a m s o n family (Sl,S2, •,Sl,I m,
m) and there is an o r t h o g o n a l d e s i g n of type (Sl,S2, ,s I) of order n
c o n s i s t i n g of e l e m e n t s ~xi, xi~0 Then there e x i s t s an H a d a m a r d m a t r i x
b) there e x i s t s a W i l l i a m s o n family (W , W2, W3, W4, I2m,
P R O P E R T Y 2.3 Let (WI, W2, W3, W4, Im, m) be a W i l l i a m s o n family
Then there e x i s t s a W i l l i a m s o n family (W , W2, W3, W4, I2m,
N o w let us i n t r o d u c e a t h e o r e m about e x i s t e n c e of W i l l i a m s o n fami-
lies special cases of which were p r o v e d in [44]
n-1
T H E O R E M 2.6 • Let {Wi}4 i=I ' Wi = Z Ai, ~ U k , n is an odd number,
k=0
Trang 28Put
W i : V i ( A I , A 2 , B I , B 2 ) , Wi+ 2 = V i ( A 3 , A 4 , B I , B 2) , Wi+ 4 = V i ( A I , A 2 , B 3 , B 4) , Wi+ 6 : V i ( A 3 , A 4 , B 3 , B 4 ) , i=1,2
Let us show that (WI, W 2 , , W 8 , Imn , mn) is a W i l l i a m s o n family, that
Trang 29C O R O L L A R Y 2.3 T h e r e e x i s t 8 - s y m m e t r i c W i l l i a m s o n m a t r i c e s of o r d e r (p+1)mn, w h e r e m,n6L, P ~ 1 ( m o d 4 ) i s a p r i m e power
N o t e t h a t t h e r e w e r e c o n s t r u c t e d 8 - W i l l i a m s o n m a t r i c e s of o r d e r s
- q ( p + 1 ) / 2 , q ~ l ( m o d 4), p ~ 1 ( m o d 4) are p r i m e n u m b e r s (Wallis [273]) -7 i+I , 11 7 • i , i=1,2, (Wallis, [219])
Trang 33l i a m s o n m a t r i c e s N o w let us v e r i f y v a l i d i t y of items 2,3,5 a n d 6 C a l -
Trang 41S e i d e l a r r a y of o r d e r 4p, then there e x i s t s a BX[4pt] array
For p=1 theore, 2.14 c o i n c i d e s w i t h the C o o p e r - W a l l i s t h e o r e m In-
Trang 52§ 3 some p r o b l e m s of c o n s t r u c t i o n for H a d a m a r d m a t r i c e s
In t h i s p a r a g r a p h we w i l l g i v e a s u r v e y of g e n e r a l a p p r o a c h e s to the c o n s t r u c t i o n s for c l a s s i c H a d a m a r d m a t r i c e s n a m e l y , G o l a y - T u r y n ,
P l o t k i n a n d W a l l i s a p p r o a c h e s L a t e r t h e s e a p p r o a c h e s w i l l be g e n e r a l i - zed a n d s t r e n t h e n e d , in p a r t i c u l a r a r o r r e l a t i o n b e t w e e n g e n e r a l i z e d
Trang 54m-j
Z i V i V i + j = 0 , j = 1 , 2 , , m - I (3.1) i=
Trang 553 If Nx(j) = 0 f o r e v e r y j, t h e n Px(j) = 0 R e v e r s e s t a t e m e n t is
n o t true
Trang 57L E M M A 3.2 If there e x i s t 4 - s u p p l e m e n t a r y s e q u e n c e s of l e n g t h n, then t h e r e e x i s t 4 ( t + 1 ) - s u p p l e m e n t a r y s e q u e n c e s of l e n g t h n, t = I , 2 , PROOF F r o m s t a t e m e n t 3.2 a n d lemma 3.1 we h a v e four 4 ( t + 1 ) - d i m e n -
s i o n a l o r t h o g o n a l ( - 1 , + 1 ) - v e c t o r s N o w by s u b s t i t u t i o n ( 4 t + 1 ) - o r t h o g o - nal v e c t o r s for o r t h o g o n a l 4 - d i m e n s i o n a l v e c t o r s of ~ ( 4 , n ) - s e q u e n c e , we get a s e q u e n c e of l e n g t h n One can o b t a i n that the s e q u e n c e r e c e i v e d
Trang 61w h e r e ai, bi, ci, di, i = 1 , 2 , , m , a r e c o o r d i n a t e s of the v e c t o r s X I,
X 2 , X 3 , X 4 r e s p e c t i v e l y • A c c o r d i n g to t h e o r e m 3.2 t h e y s a t i s f y the c o n d i -
Trang 64L e t u s p r o v e t h a t m a t r i c e s Xi, Yi' Wi' Zi s a t i s f y t h e c o n d i t i o n s
pQ = Qp P ( B k X B n ) Q T = Q ( B k X B n ) P T
(3.20)
P ' Q 6 { X i ' Yi' Zi' Wi} "
V e r i f y the c o n d i t i o n (3.20) for i=I
X I Y I = X ~ Y o x K 1 + X o Y o x K i K 2 - Y o y o x K 2 K I - Y o X o x K 2 ,
2 T + X ~ X o x K 2 K 1 - X o Y o X K 2 YiX1 = y o X o x K I _ y o y o × K i K 2 T T 2
Trang 69- c C B T + b d~ ~CA T c a ~BD T - c b .BC T + + b i b i + j c c T b i l+ 3 i l+ 3 - 1 l+ 3 i l+ 3
N O T E 3 6 I G ( t 1 , ~ 1 , , t l ) - m a t r i x is a n H a d a m a r d m a t r i x o f o r d e r
n H a d a m a r d m a t r i x G ( I , 1 , , I ) l e t u s c a l l a m a t r i x g e n e r a t e d D ( n , m ) -
d e c o m p o s i t i o n
Trang 78> {
( V - 3 ) 2 / 4 , for v ~ 1 ( m o d 4) ( v - 5 ) 2 / 8 , for v ~ 3 ( m o d 4)
Trang 81n u m b e r of n e w r o w s a n d c o l u m n s for r e d u c t i o n to a H a d a m a r d m a t r i x The p r o b l e m arose: to s y n t h e s i z e an H a d a m a r d m a t r i x f r o m the same
Trang 82n u m b e r s ~i a n d on t h e s e m a t r i c e s to b e c o m e the s q u a r e m a t r i x
k
H (n+1) = X ~ X x H.(n) ,
Trang 87{x~i)}m-1 {X 2~ (i)}m-1 {x~i) }m-1
s a t i s f y i n g t h e c o n d i t i o n s of t h e t h e o r e m L e t m be a n o d d n u m b e r
(for t h e v e n m t h e p r o o f is a n a l o g o u s )
R e w r i t e (4.22) in f o r m
Trang 88x I c {xli) m-1 (i)}m-1 , {x~i)}m-1
}i=0 , X 2 6 iX 2 i=0 '''" Xl £ i=0
r e s p e c t i v e l y
The m a t r i c e s Qi' i = 0 , 1 , , m - 1 c o n s t r u c t e d w i l l s a t i s f y the e q u a - lity Qi = Q m - i ' since X i = Xm_i, i = I , 2 , , m - I So, since Qi are o b t a - ined f r o m A - m a t r i c e s (4.25) can be r e w r i t t e n in f o r m
T h a t is the c o n d i t i o n (4.8) of t h e o r e m 4.1 holds So we o b t a i n t h a t
m a t r i x
m-1
H = I U i × Q i i=0
is the b l o c k - c i r c u l a n t H a d a m a r d matrix The b l o c k - s y m m e t r i c c o n d i t i o n
f o l l o w s f r o m e q u a l i t y
Qi = Q m - i ' i = I , 2 , ° , m - I
Trang 89The s u f f i c i e n c y is p r o v e d
C O R O L L A R Y 4.1 Let Ixi(J) I = 1, i = I , 2 , , 1 , j = 1 , 2 , , m - 1
I) x 1 ( 0 ) x 1 ( J ) + x 2 ( 0 ) x 2 (j) + + X l ( 0 ) X l (j) = -1/2, l=2p
(4.26) 2) x1(i)x1(J) + x 2 ( i ) x 2 (j) + + x l ( i ) X l (j) = 0, i~j, i=I,2 ,
m-1
L e t a l s o there e x i s t s d e p e n d e n t on 1 p a r a m e t e r s A - m a t r i x Q ( X I , X 2 , .,X I) of o r d e r mk
N o w let us try to find the c o n d i t i o n s a l l o w i n g to p i c k out the mi-
n i m a l n u m b e r of (different) m a t r i c e s f r o m the set of m a t r i c e s g e n e r a t e d
Trang 92+ X 2 X 5 x K 2 - X 5 X 2 × K 2 + X 4 X 3 x K 2 - X 3 X 4 x K 2 + X 3 X 5 x K 4 - X 5 X 3 x K 4 +
5 + X 4 X 5 x K 3 - X 4 X 5 x K 3 + Z X i X x H i H = 2 [ ( X 2 x Q 2 + x 2 x Q ] +
5 + x5x (Q7 + O~) ] + 4 Z x i X ~ x I 4 = - 4 ( X 2 + X3 + X 4 + x 5) xI 4 +
i=1
+ 4i=]XiXixI4X T = 4 ( - X X i + Z X i X ~ + I k ) x I 4
Trang 96F r o m (4.29) w e h a v e
H ( n + I ) H T ( n + I) =
k
Y X , X T x H , H T + i=1 i i i i
Trang 99H i + l , 3 = X I x Hi, 3 - X 2 x Hi, 4 - X 3 x Hi, I + X 4 x Hi, 2 ,
Trang 100T+ X3X[~ XlX[ X4X~
that is, the n e c e s s i t y is proved
It is easy to prove the sufficiency too
Trang 1014 L e t k = 2 a n d H 1 , H 2 b e i n c o m p l e t e H a d a m a r d m a t r i c e s o f o r d e r ( m , m / 2 ) T h e n t h e r e l a t i o n s (4.37) a n d (4.45) c a n be r e w r i t t e n in f o r m
Trang 110- G H ( p i+j Cpi) for a l l i > I, j > 0 (Drake, 1979);
Trang 112C o n s t r u c t e d s e t s X (k) , m k = 1 , 2 , , q a - k - 1 , s a t i s f y t h e f o l l o -
w i n g c o n d i t i o n s :
k-1 a) X (k) =q U -I X(1)
Trang 116P r o v e t h a t H ' H ' * = 4 k I 4 k ,
Trang 117AoAI* ÷ AIAo* = 0 ,
AoAo* + AIAI* = 4kI2k ,
The first equation of system (5.14) follows from AoA{* = AIAo*, sin-
§ 6 Construction of Hi~h-dimensional Hadamard
matr ice s
In this paragraph we will give a review and two approaches of construction of high-dimensional (proper and improper) Hadamard mat- rices First of these approaches is new one and the second extents the known "flat" methods to the high-dimensional case and gives so- lution of Shlochta problem Later we will introduce the notations
of density, weight and surplus for (flat and spatial) Hadamard matri-
Trang 128F u r t h e r , s i n c e
o (2) (I) = (2) (U) = - _0(2) (U n-1 ) = n
s o t
n-1 (2) (2)
(H) = n Z ~ (Qi)
i=0
By a n a l o g y o n e c a n o b t a i n t h e v a l i d i t y of t h i s r e p r e s e n t a t i o n for
Trang 131S T A T E M E N T 6.5 It is true
3/8 < pw(i) ([HBn ]) < 5/8, i=2,3
-1/4 < Pa(i) ([HBn ]) < I/4, i=2,3
The p r o o f f o l l o w s f r o m items 14 and 15
Trang 136is the c o m p l e t e l y p r o p e r cubic g e n e r a l i z e d H a d a m a r d m a t r i x [H(3,3) ] 3
Trang 139l i n e a r for M = 2 - a n d n o n - l i n e a r for d 2 - d + 4 > 4t (Paley c o n s t r u c t i o n s
a r e u s e d here) a n d t h a t t h i s m e t h o d is a d i r e c t one Some p r a c t i c a l
Trang 145a n d n o i s e l e s s c o d i n g , f i l t r a t i o n , p a t t e r n r e c o g n i t i o n ( m a t h e m a t i c a l
f o r m u l a t i o n of the p r o b l e m w i l l be g i v e n later), w i t h t h a t a n d in v i e w let us n o t e t h a t in s e v e r a l t h e o r e t i c a l a n d a p p l i e d p r o b l e m s an I m p o r -
}N is some f i x e d o r t h o g o n a l b a s e , ~ is a set of type
Trang 146k
G k = Z ai~i~oit , i=I
Trang 147{~i } be a n o r t h o g o n a l base, Yi =< x ' ~ i > ' S(';~) = -~p(Y) in p ( Y ) d y The b a s e m i n i m i z i n g e n t r o p y of a r a n d o m s o u r c e w i t h d e n s i t y - o f - p r o b a -
b i l i t y f u n c t i o n p(x) is the b a s e of e i g e n v e c t o r s of m a t r i x C
O b o v e - m e n t i o n e d f o r m u l a t i o n s of p r o b l e m s are of the f u n d a m e n t a l
t h e o r e t i c a l i m p o r t a n c e a n d f i n d w i d e l y p r a c t i c a l a p p l i c a t i o n s So,
d e c o m p o s i t i o n into s i n g u l a r v a l u e s a n d K a r h u n e n - L o e v e d e c o m p o s i t i o n are u s e d for p r o c e s s i n g of d i g i t a l s i g n a l s m a x i m i z i n g R e l a y r e l a t i o n
a d e q u a t e to p r o b l e m of f i l t r a t i o n of l e g i t i m a t e s i g n a l f r o m the n o i s e [323] In t h e s e p r o b l e m s o p t i m a l by c r i t e r i o n S is the b a s e of e i -
Trang 149ce are t r i g o n o m e t r i c f u n c t i o n s , L i p s h i t s , H e r m i t i a n f u n c t i o n s , a n d so
on R e c e n t l y m u c h a t t e n t i o n is g i v e n to i n v e s t i g a t i o n (both t h e o r e t i - cal a n d p r a c t i c a l ) of W a l s h - H a d a m a r d , Haar, S l a n t f u n c t i o n s [24] W a l s h -
Trang 1512 in p o i n t X O of c o n t i n u i t y f(x), S (f;x) c o n v e r g e s to f(X O)
2n k
3 if f(x) is c o n t i n u o u s on (0,1) t h e n S (f;x) c o n v e r g e s to
2n k f(x) u n i f o r m l y in X
Trang 154k m q(i) = E c ( ( j - I) ~ + i) • Y
Trang 164Let the rows of H a d a m a r d m a t r i c e s H are e i g e n v e c t o r s of m a t r i -
n (n) Pl -I
ces G(n) = {Gi,j }i,j=0
T H E O R E M 7.10 (Matevosyan, 1984) S u p p o s e that elements, the
b l o c k s G (n) i,j of m a t r i c e s G (n) = {G (n) } PI-1 i,j i,j=0 ' n ~ I of o r d e r
Trang 167[A] 2 = 1'1 ([W] 3 -[X] 2) (7.31)
or (what is the same)
[A] 2 =il Ai,jll =If kZ0Wijk= Xkjll = II k=0Z YN Xk,j i[ (7,32)
The n u m b e r of o p e r a t i o n s (multiplications) r e q u i r e d for r e a l i z a - tion of fast t r a n s f o r m a t i o n from (7.33) is N 2 1 o g N that is twice as little as for r e a l i z a t i o n of k n o w n t w o - d i m e n s i o n a l fast F o u r i e r trans-
f o r m a t i o n ~65]
2 The a l g o r i t h m of t h r e e - d i m e n s i o n a l g e n e r a l i z e d H a d a m a r d t r a n s -