1. Trang chủ
  2. » Khoa Học Tự Nhiên

Lecture notes in mathematics

230 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Hadamard Matrices and Their Applications
Tác giả S.S. Agaian
Người hướng dẫn L. D. Faddeev, D.Yu. Grigorev
Trường học Academy of Sciences
Chuyên ngành Mathematics
Thể loại lecture notes
Năm xuất bản 1985
Thành phố Leningrad
Định dạng
Số trang 230
Dung lượng 7,03 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

1, Erevan 44, USSR Consulting Editor D.Yu, Grigorev Leningrad Branch of the Steklov Mathematical Institute Fontanka 27, 191011 Leningrad, D-11, USSR Mathematics Subject Classification 1

Trang 2

S.S Agaian

Computer Center of the Academy of Sciences

Sevak str 1, Erevan 44, USSR

Consulting Editor

D.Yu, Grigorev

Leningrad Branch of the Steklov Mathematical Institute

Fontanka 27, 191011 Leningrad, D-11, USSR

Mathematics Subject Classification (1980): 05XX; 0 5 B X X

ISBN 3-540-16056-6 Springer-Verlag Berlin Heidelberg New York Tokyo

ISBN 0-387-16056-6 Springer-Verlag New York Heidelberg Berlin Tokyo

This work is subject to copyright All rights are reserved, whether the whole or part of the material

is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks Under

§ 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to "Verwertungsgesellschaft Wort", Munich

© by Springer-Verlag Berlin Heidelberg 1985

Printed in Germany

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr

2146/3140-543210

Trang 5

a l s o a p p e a r e d : the w o r k of S c a r p i s (1898) p r o v i n g t h a t if p = 3 ( m o d 4)

or p = l ( m o d 4) is a p r i m e n u m b e r t h e n t h e r e is an H a d a m a r d m a t r i x of

o r d e r p+1 a n d p+3, r e s p e c t i v e l y ; the w o r k of H a d a m a r d (1893) w h e r e

n the f o l l o w i n g r e s u l t in p a r t i c u l a r is stated: if A = { a i , j } i , j = 1 ,

lai,jl ~ M , ai, j are r e a l n u m b e r s for a n y i, j, t h e n the a b s o l u t e v a -

t o r i a l p r o b l e m s is the lack of u n i f i e d m e t h o d s for c o n s t r u c t i o n of H a -

d a m a r d m a t r i c e s of o r d e r 4n for all n The k n o w n m e t h o d s of c o n s -

Trang 15

(2.9)

O n t h e o t h e r h a n d L a g r a n g e t h e o r e m [ 1 2 0 ] s h o w s t h a t e v e r y p o s i t i v e

n u m b e r is r e p r e s e n t a b l e a s t h e s u m o f 4 s q u a r e s o f i n t e g e r s ; m o r e o v e r

Trang 17

a 2) if [qi o ]/2 is odd, then

1!I)i = [m-qi-V(i)-1]o /4, L(2)=i [m+qi+V(i)-1]o /4

I + 2 V ~ I ) + 2 V ~ I ) + 2V~I) = + I

Hence, we have from (2.13) and (2.14

V~ I) + V~I) + V~I = -I,

Trang 26

T H E O R E M 2•5 " Let { W ~ 1 i=I be a W i l l i a m s o n family (Sl,S2, •,Sl,I m,

m) and there is an o r t h o g o n a l d e s i g n of type (Sl,S2, ,s I) of order n

c o n s i s t i n g of e l e m e n t s ~xi, xi~0 Then there e x i s t s an H a d a m a r d m a t r i x

b) there e x i s t s a W i l l i a m s o n family (W , W2, W3, W4, I2m,

P R O P E R T Y 2.3 Let (WI, W2, W3, W4, Im, m) be a W i l l i a m s o n family

Then there e x i s t s a W i l l i a m s o n family (W , W2, W3, W4, I2m,

N o w let us i n t r o d u c e a t h e o r e m about e x i s t e n c e of W i l l i a m s o n fami-

lies special cases of which were p r o v e d in [44]

n-1

T H E O R E M 2.6 • Let {Wi}4 i=I ' Wi = Z Ai, ~ U k , n is an odd number,

k=0

Trang 28

Put

W i : V i ( A I , A 2 , B I , B 2 ) , Wi+ 2 = V i ( A 3 , A 4 , B I , B 2) , Wi+ 4 = V i ( A I , A 2 , B 3 , B 4) , Wi+ 6 : V i ( A 3 , A 4 , B 3 , B 4 ) , i=1,2

Let us show that (WI, W 2 , , W 8 , Imn , mn) is a W i l l i a m s o n family, that

Trang 29

C O R O L L A R Y 2.3 T h e r e e x i s t 8 - s y m m e t r i c W i l l i a m s o n m a t r i c e s of o r d e r (p+1)mn, w h e r e m,n6L, P ~ 1 ( m o d 4 ) i s a p r i m e power

N o t e t h a t t h e r e w e r e c o n s t r u c t e d 8 - W i l l i a m s o n m a t r i c e s of o r d e r s

- q ( p + 1 ) / 2 , q ~ l ( m o d 4), p ~ 1 ( m o d 4) are p r i m e n u m b e r s (Wallis [273]) -7 i+I , 11 7 i , i=1,2, (Wallis, [219])

Trang 33

l i a m s o n m a t r i c e s N o w let us v e r i f y v a l i d i t y of items 2,3,5 a n d 6 C a l -

Trang 41

S e i d e l a r r a y of o r d e r 4p, then there e x i s t s a BX[4pt] array

For p=1 theore, 2.14 c o i n c i d e s w i t h the C o o p e r - W a l l i s t h e o r e m In-

Trang 52

§ 3 some p r o b l e m s of c o n s t r u c t i o n for H a d a m a r d m a t r i c e s

In t h i s p a r a g r a p h we w i l l g i v e a s u r v e y of g e n e r a l a p p r o a c h e s to the c o n s t r u c t i o n s for c l a s s i c H a d a m a r d m a t r i c e s n a m e l y , G o l a y - T u r y n ,

P l o t k i n a n d W a l l i s a p p r o a c h e s L a t e r t h e s e a p p r o a c h e s w i l l be g e n e r a l i - zed a n d s t r e n t h e n e d , in p a r t i c u l a r a r o r r e l a t i o n b e t w e e n g e n e r a l i z e d

Trang 54

m-j

Z i V i V i + j = 0 , j = 1 , 2 , , m - I (3.1) i=

Trang 55

3 If Nx(j) = 0 f o r e v e r y j, t h e n Px(j) = 0 R e v e r s e s t a t e m e n t is

n o t true

Trang 57

L E M M A 3.2 If there e x i s t 4 - s u p p l e m e n t a r y s e q u e n c e s of l e n g t h n, then t h e r e e x i s t 4 ( t + 1 ) - s u p p l e m e n t a r y s e q u e n c e s of l e n g t h n, t = I , 2 , PROOF F r o m s t a t e m e n t 3.2 a n d lemma 3.1 we h a v e four 4 ( t + 1 ) - d i m e n -

s i o n a l o r t h o g o n a l ( - 1 , + 1 ) - v e c t o r s N o w by s u b s t i t u t i o n ( 4 t + 1 ) - o r t h o g o - nal v e c t o r s for o r t h o g o n a l 4 - d i m e n s i o n a l v e c t o r s of ~ ( 4 , n ) - s e q u e n c e , we get a s e q u e n c e of l e n g t h n One can o b t a i n that the s e q u e n c e r e c e i v e d

Trang 61

w h e r e ai, bi, ci, di, i = 1 , 2 , , m , a r e c o o r d i n a t e s of the v e c t o r s X I,

X 2 , X 3 , X 4 r e s p e c t i v e l y • A c c o r d i n g to t h e o r e m 3.2 t h e y s a t i s f y the c o n d i -

Trang 64

L e t u s p r o v e t h a t m a t r i c e s Xi, Yi' Wi' Zi s a t i s f y t h e c o n d i t i o n s

pQ = Qp P ( B k X B n ) Q T = Q ( B k X B n ) P T

(3.20)

P ' Q 6 { X i ' Yi' Zi' Wi} "

V e r i f y the c o n d i t i o n (3.20) for i=I

X I Y I = X ~ Y o x K 1 + X o Y o x K i K 2 - Y o y o x K 2 K I - Y o X o x K 2 ,

2 T + X ~ X o x K 2 K 1 - X o Y o X K 2 YiX1 = y o X o x K I _ y o y o × K i K 2 T T 2

Trang 69

- c C B T + b d~ ~CA T c a ~BD T - c b .BC T + + b i b i + j c c T b i l+ 3 i l+ 3 - 1 l+ 3 i l+ 3

N O T E 3 6 I G ( t 1 , ~ 1 , , t l ) - m a t r i x is a n H a d a m a r d m a t r i x o f o r d e r

n H a d a m a r d m a t r i x G ( I , 1 , , I ) l e t u s c a l l a m a t r i x g e n e r a t e d D ( n , m ) -

d e c o m p o s i t i o n

Trang 78

> {

( V - 3 ) 2 / 4 , for v ~ 1 ( m o d 4) ( v - 5 ) 2 / 8 , for v ~ 3 ( m o d 4)

Trang 81

n u m b e r of n e w r o w s a n d c o l u m n s for r e d u c t i o n to a H a d a m a r d m a t r i x The p r o b l e m arose: to s y n t h e s i z e an H a d a m a r d m a t r i x f r o m the same

Trang 82

n u m b e r s ~i a n d on t h e s e m a t r i c e s to b e c o m e the s q u a r e m a t r i x

k

H (n+1) = X ~ X x H.(n) ,

Trang 87

{x~i)}m-1 {X 2~ (i)}m-1 {x~i) }m-1

s a t i s f y i n g t h e c o n d i t i o n s of t h e t h e o r e m L e t m be a n o d d n u m b e r

(for t h e v e n m t h e p r o o f is a n a l o g o u s )

R e w r i t e (4.22) in f o r m

Trang 88

x I c {xli) m-1 (i)}m-1 , {x~i)}m-1

}i=0 , X 2 6 iX 2 i=0 '''" Xl £ i=0

r e s p e c t i v e l y

The m a t r i c e s Qi' i = 0 , 1 , , m - 1 c o n s t r u c t e d w i l l s a t i s f y the e q u a - lity Qi = Q m - i ' since X i = Xm_i, i = I , 2 , , m - I So, since Qi are o b t a - ined f r o m A - m a t r i c e s (4.25) can be r e w r i t t e n in f o r m

T h a t is the c o n d i t i o n (4.8) of t h e o r e m 4.1 holds So we o b t a i n t h a t

m a t r i x

m-1

H = I U i × Q i i=0

is the b l o c k - c i r c u l a n t H a d a m a r d matrix The b l o c k - s y m m e t r i c c o n d i t i o n

f o l l o w s f r o m e q u a l i t y

Qi = Q m - i ' i = I , 2 , ° , m - I

Trang 89

The s u f f i c i e n c y is p r o v e d

C O R O L L A R Y 4.1 Let Ixi(J) I = 1, i = I , 2 , , 1 , j = 1 , 2 , , m - 1

I) x 1 ( 0 ) x 1 ( J ) + x 2 ( 0 ) x 2 (j) + + X l ( 0 ) X l (j) = -1/2, l=2p

(4.26) 2) x1(i)x1(J) + x 2 ( i ) x 2 (j) + + x l ( i ) X l (j) = 0, i~j, i=I,2 ,

m-1

L e t a l s o there e x i s t s d e p e n d e n t on 1 p a r a m e t e r s A - m a t r i x Q ( X I , X 2 , .,X I) of o r d e r mk

N o w let us try to find the c o n d i t i o n s a l l o w i n g to p i c k out the mi-

n i m a l n u m b e r of (different) m a t r i c e s f r o m the set of m a t r i c e s g e n e r a t e d

Trang 92

+ X 2 X 5 x K 2 - X 5 X 2 × K 2 + X 4 X 3 x K 2 - X 3 X 4 x K 2 + X 3 X 5 x K 4 - X 5 X 3 x K 4 +

5 + X 4 X 5 x K 3 - X 4 X 5 x K 3 + Z X i X x H i H = 2 [ ( X 2 x Q 2 + x 2 x Q ] +

5 + x5x (Q7 + O~) ] + 4 Z x i X ~ x I 4 = - 4 ( X 2 + X3 + X 4 + x 5) xI 4 +

i=1

+ 4i=]XiXixI4X T = 4 ( - X X i + Z X i X ~ + I k ) x I 4

Trang 96

F r o m (4.29) w e h a v e

H ( n + I ) H T ( n + I) =

k

Y X , X T x H , H T + i=1 i i i i

Trang 99

H i + l , 3 = X I x Hi, 3 - X 2 x Hi, 4 - X 3 x Hi, I + X 4 x Hi, 2 ,

Trang 100

T+ X3X[~ XlX[ X4X~

that is, the n e c e s s i t y is proved

It is easy to prove the sufficiency too

Trang 101

4 L e t k = 2 a n d H 1 , H 2 b e i n c o m p l e t e H a d a m a r d m a t r i c e s o f o r d e r ( m , m / 2 ) T h e n t h e r e l a t i o n s (4.37) a n d (4.45) c a n be r e w r i t t e n in f o r m

Trang 110

- G H ( p i+j Cpi) for a l l i > I, j > 0 (Drake, 1979);

Trang 112

C o n s t r u c t e d s e t s X (k) , m k = 1 , 2 , , q a - k - 1 , s a t i s f y t h e f o l l o -

w i n g c o n d i t i o n s :

k-1 a) X (k) =q U -I X(1)

Trang 116

P r o v e t h a t H ' H ' * = 4 k I 4 k ,

Trang 117

AoAI* ÷ AIAo* = 0 ,

AoAo* + AIAI* = 4kI2k ,

The first equation of system (5.14) follows from AoA{* = AIAo*, sin-

§ 6 Construction of Hi~h-dimensional Hadamard

matr ice s

In this paragraph we will give a review and two approaches of construction of high-dimensional (proper and improper) Hadamard mat- rices First of these approaches is new one and the second extents the known "flat" methods to the high-dimensional case and gives so- lution of Shlochta problem Later we will introduce the notations

of density, weight and surplus for (flat and spatial) Hadamard matri-

Trang 128

F u r t h e r , s i n c e

o (2) (I) = (2) (U) = - _0(2) (U n-1 ) = n

s o t

n-1 (2) (2)

(H) = n Z ~ (Qi)

i=0

By a n a l o g y o n e c a n o b t a i n t h e v a l i d i t y of t h i s r e p r e s e n t a t i o n for

Trang 131

S T A T E M E N T 6.5 It is true

3/8 < pw(i) ([HBn ]) < 5/8, i=2,3

-1/4 < Pa(i) ([HBn ]) < I/4, i=2,3

The p r o o f f o l l o w s f r o m items 14 and 15

Trang 136

is the c o m p l e t e l y p r o p e r cubic g e n e r a l i z e d H a d a m a r d m a t r i x [H(3,3) ] 3

Trang 139

l i n e a r for M = 2 - a n d n o n - l i n e a r for d 2 - d + 4 > 4t (Paley c o n s t r u c t i o n s

a r e u s e d here) a n d t h a t t h i s m e t h o d is a d i r e c t one Some p r a c t i c a l

Trang 145

a n d n o i s e l e s s c o d i n g , f i l t r a t i o n , p a t t e r n r e c o g n i t i o n ( m a t h e m a t i c a l

f o r m u l a t i o n of the p r o b l e m w i l l be g i v e n later), w i t h t h a t a n d in v i e w let us n o t e t h a t in s e v e r a l t h e o r e t i c a l a n d a p p l i e d p r o b l e m s an I m p o r -

}N is some f i x e d o r t h o g o n a l b a s e , ~ is a set of type

Trang 146

k

G k = Z ai~i~oit , i=I

Trang 147

{~i } be a n o r t h o g o n a l base, Yi =< x ' ~ i > ' S(';~) = -~p(Y) in p ( Y ) d y The b a s e m i n i m i z i n g e n t r o p y of a r a n d o m s o u r c e w i t h d e n s i t y - o f - p r o b a -

b i l i t y f u n c t i o n p(x) is the b a s e of e i g e n v e c t o r s of m a t r i x C

O b o v e - m e n t i o n e d f o r m u l a t i o n s of p r o b l e m s are of the f u n d a m e n t a l

t h e o r e t i c a l i m p o r t a n c e a n d f i n d w i d e l y p r a c t i c a l a p p l i c a t i o n s So,

d e c o m p o s i t i o n into s i n g u l a r v a l u e s a n d K a r h u n e n - L o e v e d e c o m p o s i t i o n are u s e d for p r o c e s s i n g of d i g i t a l s i g n a l s m a x i m i z i n g R e l a y r e l a t i o n

a d e q u a t e to p r o b l e m of f i l t r a t i o n of l e g i t i m a t e s i g n a l f r o m the n o i s e [323] In t h e s e p r o b l e m s o p t i m a l by c r i t e r i o n S is the b a s e of e i -

Trang 149

ce are t r i g o n o m e t r i c f u n c t i o n s , L i p s h i t s , H e r m i t i a n f u n c t i o n s , a n d so

on R e c e n t l y m u c h a t t e n t i o n is g i v e n to i n v e s t i g a t i o n (both t h e o r e t i - cal a n d p r a c t i c a l ) of W a l s h - H a d a m a r d , Haar, S l a n t f u n c t i o n s [24] W a l s h -

Trang 151

2 in p o i n t X O of c o n t i n u i t y f(x), S (f;x) c o n v e r g e s to f(X O)

2n k

3 if f(x) is c o n t i n u o u s on (0,1) t h e n S (f;x) c o n v e r g e s to

2n k f(x) u n i f o r m l y in X

Trang 154

k m q(i) = E c ( ( j - I) ~ + i) • Y

Trang 164

Let the rows of H a d a m a r d m a t r i c e s H are e i g e n v e c t o r s of m a t r i -

n (n) Pl -I

ces G(n) = {Gi,j }i,j=0

T H E O R E M 7.10 (Matevosyan, 1984) S u p p o s e that elements, the

b l o c k s G (n) i,j of m a t r i c e s G (n) = {G (n) } PI-1 i,j i,j=0 ' n ~ I of o r d e r

Trang 167

[A] 2 = 1'1 ([W] 3 -[X] 2) (7.31)

or (what is the same)

[A] 2 =il Ai,jll =If kZ0Wijk= Xkjll = II k=0Z YN Xk,j i[ (7,32)

The n u m b e r of o p e r a t i o n s (multiplications) r e q u i r e d for r e a l i z a - tion of fast t r a n s f o r m a t i o n from (7.33) is N 2 1 o g N that is twice as little as for r e a l i z a t i o n of k n o w n t w o - d i m e n s i o n a l fast F o u r i e r trans-

f o r m a t i o n ~65]

2 The a l g o r i t h m of t h r e e - d i m e n s i o n a l g e n e r a l i z e d H a d a m a r d t r a n s -

Ngày đăng: 27/05/2022, 10:25

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
2. A g a i a n S.S., S a r u k h a n i a n A.G. (1978). A n o t e on the c o n s t r u c t i o n of H a d a m a r d m a t r i c e s . P r o c . F o u r t h I n t e r n . C o n g r . C y b e r n . S y s t e m s , 21-25 A u g u s t , A m s t e r d a m Sách, tạp chí
Tiêu đề: A note on the construction of Hadamard matrices
Tác giả: Agaian S.S., Sarukhani A.G
Nhà XB: Proc. Fourth Intern. Congr. Cybern. Systems
Năm: 1978
3. A g a i a n S.S., S a r u k h a n i a n A.G. (1979). G e n e r a l i z e d 6-codes. Proc. F i f t h . l n t e r n . M e e t i n g I n f . T h e o r y . T b i l i s i , 14-17 Sách, tạp chí
Tiêu đề: Generalized 6-codes
Tác giả: Agaian S.S., Sarukhani A.G
Nhà XB: Proc. Fifth Intern. Meeting Inf. Theory
Năm: 1979
4. A g a i a n S.S. (1980). A l g o r i t h m of o r t h o g o n a l m a t r i c e s fast t r a n s f o r m . Proc. F i f t h Eur. M e e t i n g o n C y b e r n . a n d S y s t e m s Res., v.8, Ser.B, 3 1 7 - 3 2 1 Sách, tạp chí
Tiêu đề: Algorithm of orthogonal matrices fast transform
Tác giả: Agaian S.S
Nhà XB: Proc. Fifth Eur. Meeting on Cybern. and Systems Res.
Năm: 1980
5. A g a i a n S.S. (1980). W i l l i a m s o n f a m i l y a n d H a d a m a r d m a t r i c e s . Proc. F i f t h A l l - U n i o n Conf. P r o b l e m s of T h e o r . C y b e r n . , N o v o s i b i r s k . 1 4 0 - 141 Sách, tạp chí
Tiêu đề: Williamson family and Hadamard matrices
Tác giả: Agaian S.S
Nhà XB: Proc. Fifth All-Union Conf. Problems of Theor. Cybern.
Năm: 1980
6. A g a i a n S.S., S a r u k h a n i a n A.G. (1980). G e n e r a l i z e d ~ - c o d e s a n d c o n - s t r u c t i o n of H a d a m a r d m a t r i c e s . P r o b l . P e r e d a c h i Inf. XVI, N 3, 50-60 Sách, tạp chí
Tiêu đề: Generalized ~-codes and construction of Hadamard matrices
Tác giả: Agaian S.S., Sarukhani A.G
Nhà XB: Problemy Peredachi Informatsii
Năm: 1980
7. A g a i a n S.S. (1981). A n e w m e t h o d for c o n s t r u c t i n g H a d a m a r d m a t r i c e s a n d the s o l u t i o n of the S h l i c h t a p r o b l e m . S i x t h H u n g . C o l l . C o m b . , J u l y 6-11, 2-3 Sách, tạp chí
Tiêu đề: A new method for constructing Hadamard matrices and the solution of the Schlichtap problem
Tác giả: Agaian S.S
Nhà XB: Sixth Hung. Coll. Comb.
Năm: 1981
8. A g a i a n S.S. (1981). On s p a t i a l H a d a m a r d m a t r i c e s of W i l l i a m s o n type. D o k l . A k a d . N a u k Arm. SSR, 72, N 3, 131-135 Sách, tạp chí
Tiêu đề: On spatial Hadamard matrices of Williamson type
Tác giả: Agaian S.S
Nhà XB: Dokl. Akad. Nauk Arm. SSR
Năm: 1981
9. A g a i a n S.S., M a t e v o s i a n A.K. (1981). G e n e r a l i z e d H a a r t r a n s f o r m - a t i o n s a n d a u t o m a t i c s y s t e m s for q u a l i t y c o n t r o l of p r i n t e d c i r - c u i t s . A c t a C y b e r n . 5, N 3, 345-363 Sách, tạp chí
Tiêu đề: Generalized Haar transformations and automatic systems for quality control of printed circuits
Tác giả: Agaian S.S., Matevosian A.K
Nhà XB: Acta Cybernetica
Năm: 1981
10. A g a i a n S.S., S a r u k h a n i a n A.G. (1981). C y c l i c a n d n o n c y c l i c g e n e r a - l i z e d 6-code c o n s t r u c t i o n . P r o c . I n t e r n . C o l l . Inf. T h e o r y , 24-28 A u g u s t , B u d a p e s t Sách, tạp chí
Tiêu đề: Cyclic and noncyclic generalized 6-code construction
Tác giả: Agaian S.S., Sarukhani A.G
Nhà XB: Proc. Intern. Coll. Inf. Theory
Năm: 1981
13. A g a i a n S.S. (1982). On Plotkin hypothesis. Proc. 27-th Int.Sci. Coll.Techn. Inst. Ilmenau, DDR Sách, tạp chí
Tiêu đề: On Plotkin hypothesis
Tác giả: A g a i a n S.S
Nhà XB: Proc. 27-th Int.Sci. Coll.Techn. Inst. Ilmenau, DDR
Năm: 1982
14. A g a i a n S.S., M a t e v o s i a n A.K. (1982). Fast H a d a m a r d transformations. Proc.Comput.Cent. A k a d . N a u k Arm. SSR, N 12, 73-90 Sách, tạp chí
Tiêu đề: Fast Hadamard transformations
Tác giả: Agaian S.S., Matevosian A.K
Nhà XB: Proc.Comput.Cent. Akad. Nauk Arm. SSR
Năm: 1982
16. A g a i a n S.S. (1984). C o n s t r u c t i o n of plane and spatial H a d a m a r d b l o c k matrices. Proc.Comput.Cent. A k a d . N a u k Arm.SSR, Erevan Gos.Univ., v.XIII, M a t h . p r o b l e m s of Cybern. and Comput. Eng. H a d a m a r d matrices and a d j a c e n t problems Sách, tạp chí
Tiêu đề: Construction of plane and spatial Hadamard block matrices
Tác giả: Agaian S.S
Nhà XB: Proc.Comput.Cent. Akad. Nauk Arm.SSR, Erevan Gos.Univ.
Năm: 1984
17. Agaian S.S., E g i a z a r i a n K.O. (1984). G e n e r a l i z e d H a d a m a r d matrices. Proc.Comput.Cent. A k a d . N a u k Arm. SSR and Erevan Gos.Univ., v.XIII, Math. problems of Cybern. and Comput. Eng. H a d a m a r d m a t r i c e s and adjacent problems Sách, tạp chí
Tiêu đề: Generalized Hadamard matrices
Tác giả: Agaian S.S., E g i a z a r i a n K.O
Nhà XB: Proc.Comput.Cent. A k a d . N a u k Arm. SSR
Năm: 1984
18. Ahrons B.W. and Szekeres G. (1969). On a c o m b i n a t o r i a l generali- zation of 27 lines a s s o c i a t e d with a cubic surface. J.Aust.Math.Soc., Set.A, 10, 485-492 Sách, tạp chí
Tiêu đề: On a combinatorial generalization of 27 lines associated with a cubic surface
Tác giả: Ahrons B.W., Szekeres G
Nhà XB: J.Aust.Math.Soc.
Năm: 1969
19. A i z e r m a n M.A., B r a v e r m a n E.M., Rosonoer L.I. (1964). T h e o r e t i c a l foundations of potential function m e t h o d in the p r o b l e m of auto- maton t r a i n i n g in c l a s s i f i c a t i o n of input conditions. Avtom. Tele- mekh. XXV, N 6, 917-936 Sách, tạp chí
Tiêu đề: Theoretical foundations of potential function method in the problem of automaton training in classification of input conditions
Tác giả: Aizerman M.A., Braverman E.M., Rosonoer L.I
Nhà XB: Avtom. Telemekh.
Năm: 1964
20. A l e x a n d r i d e s N.A., Klinger A. (1971). Walsh orthogonal functions in g e o m e t r i c a l feature extaction. IEEE Trans. Electromagn, Compa- rib. 13, N 3, 18-25 Sách, tạp chí
Tiêu đề: Walsh orthogonal functions in geometrical feature extraction
Tác giả: Alexandrides N.A., Klinger A
Nhà XB: IEEE Trans. Electromagn. Compat.
Năm: 1971
21. A n d r e s T.H., Stanton R.G. (1977). Sequences of Go!ay. L e c t . N o t e s Math., v.622, 44-54 Sách, tạp chí
Tiêu đề: Sequences of Go!ay
Tác giả: Andres T.H., Stanton R.G
Nhà XB: Lect. Notes Math.
Năm: 1977
23. Arazi B e h j a m i n (1979). Some p r o p e r t i e s of H a d a m a r d m a t r i c e s gene- r a t e d r e c u r s i v e l y by K r o n e c k e r products. Linear A l g e b r a Appl., 25, 27-39 Sách, tạp chí
Tiêu đề: Some properties of Hadamard matrices generated recursively by Kronecker products
Tác giả: Arazi B e h j a m i n
Nhà XB: Linear Algebra and its Applications
Năm: 1979
25. B a n e r j e e K.S. (1975). W e i n i n g D e s i g n s for C h e m i s t r y , M e d i c i n e , E c o - n o m i c s , O p e r a t i o n s a n d S t a t i s t i c s , D e k k e r , N e w York Sách, tạp chí
Tiêu đề: Weining Designs for Chemistry, Medicine, Economics, Operations and Statistics
Tác giả: Banejee K.S
Nhà XB: Dekker
Năm: 1975
26. B a u m e r t L.D. (1962). Six i n e q u i v a l e n t H a d a m a r d 1~.~trices of o r d e r 2n, n ~ 5. Lett. P r o p u l s . L a b . R e s . S u m m a r y , 36-12. I, 7 4 - 7 6 , J . P . L . , P a s a d e n a , C a l i f o r n i a Sách, tạp chí
Tiêu đề: Six inequivalent Hadamard matrices of order 2n, n ≤ 5
Tác giả: Baumert L.D
Nhà XB: Lett. Propul. Lab. Res. Summary
Năm: 1962