C y clic Galols Extensions ° " of Commutative Rings Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest... ISBN 3-540-56350-4 Springer-Verlag Ber
Trang 1Lecture Notes in Mathematics
Trang 2C y clic Galols Extensions ° "
of Commutative Rings
Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest
Trang 3ISBN 3-540-56350-4 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-56350-4 Springer-Verlag New York Berlin Heidelberg
This work is subject to copyright All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfihns or in any other way, and storage in data banks Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag Violations are liable for prosecution under the German Copyright Law
© Springer-Verlag Berlin Heidelberg 1992
Printed in Germany
Typesetting: Camera ready by author
46/3140-543210 - Printed on acid-free paper
Trang 4O: Galots theory of commutative rinsa
Definitions and basic p r o p e r t i e s
The main t h e o r e m o f Gatois t h e o r y
Trang 5§3 Kummer theory without the condition ,,p-I ~ R" 116
§4 The main result and Artin-Hasse exponentials 120
§6 Application: Generic Galois extensions 135
Trang 6INTRODtI~I'ION
The s u b j e c t o f t h e s e n o t e s is a part o f c o m m u t a t i v e algebra, and is a l s o
c l o s e l y r e l a t e d t o c e r t a i n t o p i c s in algebraic n u m b e r t h e o r y and algebraic g e o m e t r y The basic p r o b l e m s in Galois t h e o r y o f c o m m u t a t i v e rings are t h e f o l l o w i n g : W h a t
is t h e c o r r e c t definition o f a Galois e x t e n s i o n ? W h a t are their general p r o p e r t i e s (in particular, in c o m p a r i s o n with t h e field case}? And t h e m o s t f r u i t f u l q u e s t i o n
in our opinion: Given a c o m m u t a t i v e ring R and a finite abelian g r o u p G, is t h e r e any possibility o f describing a// Galois e x t e n s i o n s o f R with g r o u p G?
These q u e s t i o n s will be d e a l t with in c o n s i d e r a b l e generality In later c h a p t e r s ,
we shall t h e n apply the r e s u l t s in n u m b e r - t h e o r e t i c a l and g e o m e t r i c a l s i t u a t i o n s , which m e a n s t h a t we c o n s i d e r m o r e special c o m m u t a t i v e rings: rings o f i n t e g e r s and rings o f f u n c t i o n s N o w algebraic n u m b e r t h e o r y as well as algebraic g e o m e t r y have their o w n refined m e t h o d s t o deal with Galois e x t e n s i o n s : in n u m b e r t h e o r y one s h o u l d name c l a s s field t h e o r y f o r instance Thus, the m e t h o d s o f t h e general
t h e o r y f o r Galois e x t e n s i o n s o f rings are always in c o m p e t i t i o n with t h e m o r e special m e t h o d s o f t h e discipline where they are applied It is hoped the reader will g e t a feeling t h a t t h e general m e t h o d s s o m e t i m e s also lead t o new r e s u l t s and provide an i n t e r e s t i n g a p p r o a c h t o old ones
Let us briefly review the d e v e l o p m e n t o f the subject Hasse {|949} s e e m s t o have been t h e first t o c o n s i d e r the t o t a l i t y o f G - G a l o i s e x t e n s i o n s L o f a given
n u m b e r field K He realized t h a t f o r finite abetian G this s e t admits a natural
abelian g r o u p s t r u c t u r e , i f one a l s o a d m i t s c e r t a i n " d e g e n e r a t e " e x t e n s i o n s L / K
which are n o t fields For example, t h e neutral e l e m e n t o f this g r o u p is t h e direct
p r o d u c t o f copies o f K, w i t h index s e t G This c o n s t i t u t e s t h e f i r s t f u n d a m e n t a l idea The s e c o n d idea, initiated by A u s l a n d e r and G o l d m a n {1960} and t h e n b r o u g h t
t o p e r f e c t i o n by Chase, Harrison, and R o s e n b e r g (1965L is t o admit base rings R instead o f fields It is n o t so obvious w h a t t h e definition o f a G - G a l o i s e x t e n s i o n
S / R o f c o m m u t a t i v e rings s h o u l d be, b u t once one has a g o o d definition (by t h e way, all g o o d definitions t u r n o u t t o be equivalent}, t h e n one a l s o o b t a i n s nice
f u n c t o r i a l i t y p r o p e r t i e s , stability under base c h a n g e f o r instance, and t h e t h e o r y runs a l m o s t as s m o o t h l y as f o r fields H a r r i s o n {1965} p u t t h e t w o ideas t o g e t h e r
and defined, for G finite abelian, t h e g r o u p o f all G - G a l o i s e x t e n s i o n s o f a given
c o m m u t a t i v e ring R m o d u l o G - i s o m o r p h i s m This g r o u p is n o w called the H a r r i s o n
g r o u p , and we d e n o t e it by H(R,G), Building on the general t h e o r y o f Chase, Harrison, and Rosenberg, and developing s o m e new t o o l s , we c a l c u l a t e in t h e s e
n o t e s t h e g r o u p H(R,G) in a fairly general setting
Trang 7viii
The principal link b e t w e e n this t h e o r y and n u m b e r t h e o r y is t h e s t u d y o f ramification Suppose L is a G - G a l o i s e x t e n s i o n o f the n u m b e r field K, E a s e t o f finite places o f K, and R = Or,~: the ring o f ) - i n t e g e r s in K Then the integral
c l o s u r e S o f R in L is with the given G - a c t i o n a G - G a l o i s e x t e n s i o n o f R if and only if L/K is at m o s t ramified in places which b e l o n g t o E In m o s t applications, will be t h e s e t o f places over p The r e a s o n f o r this choice will b e c o m e a p p a r e n t when we d i s c u s s Z - e x t e n s i o n s below
We n o w d i s c u s s t h e c o n t e n t s o f t h e s e n o t e s in a little more detail
A f t e r a s u m m a r y o f Galois t h e o r y o f rings in Chap 0, which also explains
t h e c o n n e c t i o n w i t h n u m b e r t h e o r y , and Z - e x t e n s i o n s , we develop in Chap I a p
structure theory f o r Galois e x t e n s i o n s with cyclic g r o u p G = Cpn o f order pn, under the h y p o t h e s i s t h a t p - I e R and p is an o d d prime number For technical r e a s o n s ,
we also s u p p o s e t h a t R has no nontrivial i d e m p o t e n t s Since the H a r r i s o n g r o u p H(R, G) is f u n c t o r i a l in b o t h a r g u m e n t s , and preserves p r o d u c t s in t h e right a r g u - ment, this also gives a s t r u c t u r e t h e o r y f o r t h e case G finite abelian, IGI - t e R The basic idea is simple If R c o n t a i n s a primitive p n - t h r o o t o f unity ~ {this
n o t i o n has t o be defined, o f course}, and p - t e R, t h e n Kummer t h e o r y is available
f o r Cp~-extensions o f R The s t a t e m e n t s o f Kummer t h e o r y are, however, m o r e
c o m p l i c a t e d t h a n in t h e field case: it is no l o n g e r true t h a t every C p n - e x t e n s i o n
S/R c a n be g o t t e n by " e x t r a c t i n g t h e p n - t h r o o t o f a unit o f R", b u t the o b s t r u c - tion is u n d e r c o n t r o l The p r o c e d u r e is n o w t o adjoin ~, t o R s o m e h o w (it is a lot
o f work t o make this precise}, use Kummer t h e o r y for the ring S o b t a i n e d in this way, and d e s c e n d again Here a very i m p o r t a n t c o n c e p t m a k e s its appearance
A G - G a l o i s e x t e n s i o n S/R is defined t o have normal basis, if S has an R - b a s i s o f the f o r m {y(x) [ y e G} for s o m e x e S Fo G = Cp~, t h e e x t e n s i o n s with n o r m a l basis make up a subgroup NB(R, Cpn) o f H(R, Cpn) In Chap I we prove r a t h e r precise r e s u l t s on t h e s t r u c t u r e o f NB(R, Cpn), and o f H(R, Cpn)/NB(R, Cpn) In the field case, t h e l a t t e r g r o u p is trivial, b u t n o t in general K e r s t e n and Michali~ek {1988} were t h e f i r s t t o prove r e s u l t s for NB(R, Cpn) Our r e s u l t says t h a t
NB(R, Cpn) is " a l m o s t " i s o m o r p h i c t o an explicitly given s u b g r o u p o f S,*/(pn-th
powers}, and Hi R, Cpn )/NB(R, Cpn ) is i s o m o r p h i c t o an explicitly given s u b g r o u p
o f the Picard g r o u p o f S The d e s c r i p t i o n o f NB{R, Cp~} is basic f o r the c a l c u l a -
t i o n s in Chap III and V
In Chap II we t r e a t c o r e s t r i c t i o n and a r e s u l t o f type "Hilbert 90" This
a m o u n t s t o the following: We g e t a n o t h e r d e s c r i p t i o n o f NB(R,Cp~), this time as
a factor g r o u p o f S~/(p~-th powers} This is s o m e t i m e s more practical, as w i t -
n e s s e d by t h e lifting theorems which c o n c l u d e Chap II: If I is an ideal o f R, c o n - tained in t h e J a c o b s o n radical o f R, t h e n every C p n - e x t e n s i o n S o f R/I with normal basis is o f t h e f o r m S - T/IT, T e NB(R, Cp~)
Trang 8In Chap Ill we s e t o u t t o c a l c u l a t e the o r d e r o f NB(R, Cp,~), w h e r e n o w
R O r [ p - i ] , K a n u m b e r field A l t h o u g h one a l m o s t never k n o w s t h e g r o u p s S * t l explicitly, which are c l o s e l y r e l a t e d t o the g r o u p o f units in t h e ring o f i n t e g e r s
o f K(~ n), one can n e v e r t h e l e s s do the c a l c u l a t i o n one w a n t s , by dint o f s o m e t r i c k s involving a little c o h o m o l o g y o f g r o u p s All this is p r e s e n t e d in a quite e l e m e n t a r y way We d e m o n s t r a t e t h e s t r e n g t h o f t h e m e t h o d by deducing the Galois t h e o r y
o f finite fields, and a piece o f local c l a s s field theory The main r e s u l t for n u m b e r fields K is t h a t with R as above, and n n o t " t o o small", the o r d e r o f NB(R, Cpn)
equals c o n s t p (1 +r2)n, where r 2 is h a l f the n u m b e r o f nonreal e m b e d d i n g s K C
as usual
The goal o f Chap IV is t o g e t an u n d e r s t a n d i n g , h o w far t h e s u b g r o u p
NB(R, Cp,~) d i f f e r s f r o m H(R, Cp,~), and a similar q u e s t i o n f o r Zp in t h e place o f
Cpn Here H(R, Zp) is t h e g r o u p o f Z p - e x t e n s i o n s o f R A Z p - e x t e n s i o n is basically
a t o w e r o f C p , - e x t e n s i o n s , n -~ co It is k n o w n t h a t all Z p - e x t e n s i o n s o f K are unramified o u t s i d e p, and hence already a Z p - e x t e n s i o n s o f R, which justifies t h e choice o f the ring R
1 + r 2 This was previously proved in a s p e -
We prove in IV §2: NB(R,Zp) - Zp
clal case by K e r s t e n and Michali~ek (1989) The r e s u l t is w h a t one e x p e c t s f r o m the f o r m u l a f o r INB( R, Cp~)t, b u t the p a s s a g e t o t h e limit p r e s e n t s s o m e subtleties The index qn = [H(R, Cpn):NB(R,Cp~)] is s t u d i e d in s o m e detail, and we s h o w t h a t q~ either g o e s t o infinity or is e v e n t u a l l y c o n s t a n t f o r n -* ~ The first case c o n -
j e c t u r a l l y never happens: we prove t h a t this case o b t a i n s if and only t h e f a m o u s
L e o p o l d t c o n j e c t u r e fails f o r K and p A n o t h e r way o f saying this is as f o l l o w s : NB(R, Zp) has finite index in H(R, 7p) if and only if the L e o p o l d t c o n j e c t u r e is t r u e
f o r K and p We give r e s u l t s a b o u t the actual value o f t h a t index; in particular, it can be d i f f e r e n t f r o m 1
A p a r t f r o m adjoining r o o t s o f unity, there is so far only o t h e r explicit way
o f g e n e r a t i n g large abelian e x t e n s i o n s o f a n u m b e r field K, namely, adjoining t o r s i o n points on abelian varieties with c o m p l e x multiplication We s h o w in IV §S t h a t
l i p - e x t e n s i o n s obtained in t h a t way t e n d to have normal b a s e s over R = O r [ p - i ] , and a weak c o n v e r s e t o this s t a t e m e n t These r e s u l t s are in tune with t h e m u c h more explicit r e s u l t s o f C a s s o u - N o g u ~ s and Taylor (1985) for elliptic curves There is a c h a n g e o f scenario in Chap V There we c o n s i d e r f u n c t i o n fields
o f varieties over n u m b e r fields Such f u n c t i o n fields are a l s o called absolutely fini- tely generated fields over Q A f t e r s o m e p r e r e q u i s i t e s f r o m algebraic g e o m e t r y , we
s h o w a relative finiteness r e s u l t on C p n - G a l o i s coverings o f such varieties, which
is similar t o r e s u l t s o f Katz and Lang (1981), and we prove t h a t all Z p - e x t e n s i o n s
o f an a b s o l u t e l y finitely g e n e r a t e d field K already c o m e f r o m the g r e a t e s t n u m b e r field k c o n t a i n e d in K In o t h e r w o r d s : for n u m b e r fields k one does n o t k n o w h o w
Trang 9many i n d e p e n d e n t Z - e x t e n s i o n s k has, unless L e o p o l d t ' s c o n j e c t u r e is k n o w n to p
be t r u e f o r K and p, b u t in a g e o m e t r i c situation, no new Z p - e x t e n s i o n s arise The l a s t c h a p t e r {Chap VI) p r o p o s e s a s t r u c t u r e t h e o r y for Galois e x t e n s i o n s with g r o u p Cpn, in c a s e t h e g r o u n d ring R c o n t a i n s a primitive p ~ - t h r o o t o f unity
~n b u t n o t necessarily p - I e R It is a s s u m e d , however, t h a t p does n o t divide zero
in R Even t h o u g h Kummer t h e o r y fails for R, we may still a s s o c i a t e t o many
Cpn-extensions S/R a c l a s s ~0n(S) = [ u ] in R* m o d p~ - t h powers If R is normal,
S will be t h e integral c l o s u r e o f R in R[p-l,P~Z-u] The main q u e s t i o n is: W h i c h units u • R* may o c c u r here? In § 2 we e s s e n t i a l l y p e r f o r m a r e d u c t i o n t o t h e case
R p - a d i c a l l y c o m p l e t e Taking up a paper o f Hesse {1936), we t h e n a n s w e r our
q u e s t i o n by using s o - c a l l e d A r t i n - H a s s e exponentials It t u r n s o u t t h a t t h e a d m i s - sible values u are precisely the values o f certain universal polynomials, with p a r a -
m e t e r s running over R Reduction m o d p also plays an e s s e n t i a l role, and for this
r e a s o n we have t o review Gatois t h e o r y in c h a r a c t e r i s t i c p in § I In the final § 6 the d e s c e n t technique o f Chap ! c o m e s back into play In § 4 - 5 a "generic" Cpn-
e x t e n s i o n o f a c e r t a i n universal p - c o m p l e t e ring c o n t a i n i n g ~ {but n o t p - l ) w a s
c o n s t r u c t e d , and we are n o w able t o see in detail h o w this e x t e n s i o n d e s c e n d s
d o w n t o a similar g r o u n d ring w i t h o u t ~,,, t o wit: the p - a d i c c o m p l e t i o n o f Z[X] This e x t e n s i o n is, r o u g h l y speaking, a p r o t o t y p e o f C p n - e x t e n s i o n s o f p - a d i c a l l y
c o m p l e t e rings All this is in principle calculable
M o s t c h a p t e r s begin with a s h o r t overview o f their c o n t e n t s C r o s s r e f e r e n c e s are indicated in the usual style: the c h a p t e r s are n u m b e r e d O, I, II VI, and a
r e f e r e n c e n u m b e r n o t c o n t a i n i n g O or a Roman numeral m e a n s a r e f e r e n c e within the same c h a p t e r All rings are supposed commutative {except, occasionally, an
e n d o m o r p h i s m ring), and with unity O t h e r c o n v e n t i o n s are s t a t e d where needed Earlier v e r s i o n s o f c e r t a i n p a r t s o f t h e s e n o t e s are c o n t a i n e d in t h e journal articles Greither {1989), {1991)
It is my p l e a s u r a b l e d u t y t o t h a n k my c o l l e a g u e s w h o have helped t o improve the c o n t e n t s o f t h e s e notes Ina K e r s t e n has influenced t h e p r e s e n t a t i o n o f earlier versions in many ways and provided valuable i n f o r m a t i o n Also, t h e helpful and detailed r e m a r k s o f several r e f e r e e s are appreciated; I like t o think t h a t their
s u g g e s t i o n s have r e s u l t e d in a b e t t e r o r g a n i z a t i o n o f the notes Finally, I am
g r a t e f u l f o r w r i t t e n and oral c o m m u n i c a t i o n s t o S Hllom, G Malle, G Janelidze, and T N g u y e n Quang Do
Trang 10D e f i n i t i o n 1.I, The K - a l g e b r a L a G is t h e L - v e c t o r s p a c e (~oe¢LuG ( t h e u o a r e j u s t
f o r m a l s y m b o l s ) , w i t h m u l t i p l i c a t i o n given by (Xuo)(itu~) X.c(it)-uc~ ( X , i t e L ) The m a p j: L a G -) E n d r ( L ) is given b y
jC~u o) = (it ~ X'o(~)) ~ E n d r ( L )
~ p o s l U o n ~ 9_ j is a w e l l - d e f i n e d K - a l g e b r a homomorphism, which is bijective i f f
G is e m b e d d e d in A u t ( L / K ) and L / K is a G-Galois extension
Proof The f i r s t s t a t e m e n t is e a s y t o check A s s u m e G c A u t ( L / K ) and L / K is
G - G a l o i s Then by D e d e k i n d ' s L e m m a t h e e l e m e n t s a o f G are L - l e f t l i n e a r l y i n d e -
p e n d e n t in E n d x ( L ) , hence j is a m o n o m o r p h i s m Since d i m r ( L ~ G ) - [ L : K ] 2
d i m r E n d x ( L ) , j is b i j e c t i v e
Trang 11~ o n L3 The K - a l g e b r a L (a) is defined t o be the s e t o f all maps G -* L, e n d o -
w e d with t h e obvious addition and multiplication (Note t h a t L ~, w i t h o u t b r a c k e t s ,
d e n o t e s a fixed field.) Let h: L ®K L ~ L (c~ be defined by h ( x ® y ) = ( x o ( y ) ) o e G
~ o n L 4 The m a p h is a L - a l g e b r a h o m o m o r p h i s m (here L operates on the l e f t
f a c t o r o f L ®r L), and h is bijective i f f G e m b e d s into E n d r ( L ) and L / K is G-Galois
P r o o f The f i r s t s t a t e m e n t is obvious Pick a K - b a s i s Yi Yn o f L Then I® Yr l®y~ is an L - b a s i s o f L ®r L Thus we see t h a t h is bijective iff t h e matrix
(o(yt))oeG, l<i< n has full rank ( n o t e t h a t this is indeed a square matrix) The l a t t e r
c o n d i t i o n says t h a t the images o f all 0 e G are L - l e f t linearly independent in
E n d r ( L ) , or ( w h a t is t h e same) t h a t t h e map j o f 1.1 is injective Hence 1.4 f o l l o w s
R = S c (fixed ring under G), and the map h: S®t~S ~ S (c), h ( x ® y ) = ( x o ( y ) ) o e G
e x a c t l y as in 1.3, is bijective, or ( w h a t is the same) an S - a l g e b r a i s o m o r p h i s m lSAtamplml: a) Galois e x t e n s i o n s o f fields are obviously a special case
b) For any c o m m u t a t i v e ring R we have the trivial G - e x t e n s i o n S = R (~) which
is defined as f o l l o w s : The a l g e b r a R (c) is again j u s t Map(G,R) with the canonical
R - a l g e b r a s t r u c t u r e , and t h e action o f G is given by index shift:
= f o r o G ,
It is an easy exercise t o prove t h a t in this case indeed S a = R and h is bijective
We shall see m o r e e x a m p l e s below
There e x i s t p l e n t y o f o t h e r definitions, or r a t h e r c h a r a c t e r i z a t i o n s , o f G - G a l o i s
e x t e n s i o n s o f c o m m u t a t i v e rings Some o f t h e m are listed in the next t h e o r e m :
~ L 6 [ C h a s e - H a r r i s o n - R o s e n b e r g (1965), Thm 1.3]: Let R c S b e c o m m u - tative rings, G c A u t ( S / R ) a f i n i t e s u b g r o u p such that S ~ = R T h e n the f o l l o w i n g conditions are equivalent:
(i) S / R is G-Galois (i.e p e r def.: h: S ®e S ~ S (~) is bijective);
(ii) h: S @1~ S * S (~) is surjective;
Trang 12(ii') T h e r e e x i s t n e ~ a n d x I x , Yl Yn ¢ S s u c h t h a t ~ l x ~ o ( y t ) is 1 or 0, according to whether o = e G or c 4: e c ( W e m a y write ~=ixto(yt) = ~c,e.)
(ii') ~ (iii): W e f i r s t s h o w t h a t RS is f i n i t e l y g e n e r a t e d p r o j e c t i v e D e f i n e t h e t r a c e tr: S * R b y t r ( y ) = ~ , a c G o ( y ) (tr is w e l l - d e f i n e d s i n c e S ~ = R, a n d R - l i n e a r s i n c e
(iv) ~ (ii'): W e f i r s t c o n s t r u c t a s o l u t i o n o f t h e f o r m u l a in (ii') f o r a s i n g l e o * e~
By (iv), t h e ideal o f S g e n e r a t e d b y all y - o ( y ) is c o n t a i n e d in no m a x i m a l ideal,
h e n c e is e q u a l t o S O n e f i n d s h e n c e n o e IN a n d x l ( ° ) , x(O) y(O) y r ~ ) e S
• , n O , with ~.,x,(o).(y,(O)-o{yl(°))) I N o w one lets x 0 = ~,:~x,(O).o(y {°)) and Y0 -I
Trang 16(ii) S is s e p a r a b l e o v e r R, and f o r each n o n z e r o i d e m p o t e n t e • S and any c,
• G with c * z, there e x i s t s y • S with e ' o ( y ) * e z ( y ) ( N o t e that the last c o n - dition is v a c u o u s l y t r u e i f S has no i d e m p o t e n t s b e s i d e 0 and 1.)
P r o o f See C h a s e - H a r r i s o n - R o s e n b e r g (1965), Thin 1.3 T h e l a s t c o n d i t i o n in (ii) is
(ill S is, in the c a n o n i c a l way, an H - G a l o i s e x t e n s i o n o f U
(iiil H is the g r o u p o f all c • G which leave U pointwise f i x e d
(iv) I f H is a n o r m a l s u b g r o u p o f G, then U is, in the c a n o n i c a l way, a G / H - Galois e x t e n s i o n o f R
Trang 18to be a canonical surjection G -~ G / N , then ~ * ( S ) = S ~ as in the above discussion
(For the construction o f ~ ~, see the p r o o f o f this theorem.)
In other words: I f we let H(R,G) be the set o f isomorphism classes o f G-Galois e x t e n - sions o f R, then H(R,G) is again functorial in G, and the prescription "~ ~-~ H ( R , ~ ) " now preserves composition
I~lamltAo~ The s e t H(R,G) j u s t d e f i n e d is a l s o c a l l e d t h e Harrison set o f R and G Proof o f Thm 3.1 W e do a) and b) s i m u l t a n e o u s l y F i r s t we define ~* Let S
(ii) n * S / R is, with t h e given H - a c t i o n , indeed an H - G a l o i s e x t e n s i o n
We do (i) f i r s t , by exhibiting n a t u r a l bijections
M a p ~ ( J , M a p ~ ( H , S ) ) ~ M a p ~ ( J , S)
( I t is l e f t t o t h e r e a d e r t o verify t h a t ~ a n d ~ are J - e q u i v a r i a n t R - a l g e b r a h o m o -
m o r p h i s m s ) L e t c t ( y ) = y ( - ) ( e s ) f o r y in t h e l e f t hand side, i.e ct(y)(j) = y ( j ) ( e s )
f o r j ~ J Let ~(z)(j)(h) = z(~b(h)j) f o r z in t h e r i g h t hand side, h~H, j e J
W e c h e c k ~ is w e l l - d e f i n e d , i.e ~(y)e Map~b~(J,S): Let j ~ J , g e G W e c a l c u l a t e :
txty)(@r(g).j) = y(~Im(g).j)te~)
= (~(g)*y(j))(e n) (since y ~ M a p ~ )
= y ( j ) ( e n n ( g ) ) (def o f H - a c t i o n on M a p n ( H , S ) )
= g ( y ( j ) ( e n ) ) (since y ( j ) ~ M a p x )
Trang 1910 c h a p 0
= g (cx{y)(j)), q e d B0t is t h e i d e n t i t y : L e t y e Mapcv(J, M a p n ( H S ) ) j e J , h ~ H T h e n ( [ 3 ~ ( y ) ) ( j ) ( h ) =
Trang 203 9 [ H a r r i s o n (1965)] a) With this definition, H ( R , G ) b e c o m e s an abelian group whose neutral e l e m e n t is (the class of) the trivial extension R(C)/R
b) I f x: G ~ H is a homomorphism f r o m G to another abelian group H, then
n*: H ( R , G ) -, H ( R , H ) is a group homomorphism
Proof a) This is a r a t h e r f o r m a l a r g u m e n t e x p l o i t i n g t h e f u n c t o r i a l i t y p r o p e r t i e s
L e t us b e g i n b y s h o w i n g a s s o c i a t i v i t y o f t h e H a r r i s o n p r o d u c t L e t S, T, U e H ( R , G ) Then: ( S ' T ) ' U = ~t*(~t*(S®,T) o R U)
Trang 223.~ Given a commutative ring R, there exists a pro finite abelian group D R
Proof Every l e f t e x a c t f u n c t o r f r o m finite abelian g r o u p s t o abelian g r o u p s is
p r o - r e p r e s e n t a b l e For details, see H a r r i s o n (1965), p r o o f o f Thm 4
i l a m ~ l m , a) The p r o o f gives at t h e same time the uniqueness o f fl R O f t e n tq R is called t h e abelian f u n d a m e n t a l group o f R, or t h e abelianized absolute Galois group
o f R Explicitly one has fl R = p r o j l i m ( H ( R , Z / n Z ) V ) , where t h e g r o u p s Z / n Z f o r m
an inductive s y s t e m indexed by t h e divisibility lattice o f ~q, and v means P o n t r y a g i n dual See Harrison, loc.ctt
b) By t h e m e t h o d s o f t h e p r o o f o f 3.2, one can see w i t h o u t difficulty: if [k]:
G -, G is t h e h o m o m o r p h i s m g e -, gk (G finite abelian), t h e n [k]*: H{R,G) -, H(R,G) is m u l t i p l i c a t i o n by k in t h e H a r r i s o n group In particular, H(R,G) is anni- hilated by t h e e x p o n e n t o f G, hence t o r s i o n T h e r e f o r e t h e P o n t r y a g i n dual in a) is indeed profinite
We w a n t t o s h o w t h a t the g r o u p D R has in many c a s e s an i n t e r p r e t a t i o n as a (profinite) g r o u p o f a u t o m o r p h i s m s o f an a p p r o p r i a t e (infinite) e x t e n s i o n o f R
If R - - K is a field, the required g r o u p is A u t ( K a b / K ) , where K ab is the maximal abelian Galois e x t e n s i o n o f K More generally, J a n u s z (1965) has p r o v e d t h e e x i s -
t e n c e o f a separable closure f o r every c o n n e c t e d ring R This is by definition a c o n -
n e c t e d R - a l g e b r a R sep which is a filtered union o f G - G a l o i s e x t e n s i o n s o f R (G varies, o f c o u r s e ) , s u c h t h a t every c o n n e c t e d Galois e x t e n s i o n S / R is e m b e d - dable in R sep There is no ambiguity here as t o w h a t t h e Galois g r o u p o f S / R is,
b e c a u s e o f t h e f o l l o w i n g r e s u l t (see C h a s e - H a r r i s o n - R o s e n b e r g (1955), Cot 3.3
or this c h a p t e r , 7.3}: I f S / R is a G - G a l o i s e x t e n s i o n o f c o n n e c t e d rings, t h e n
A u t ( S / R ) = G As p r o v e d by Janusz (1966), the g r o u p ~/R = A u t ( R S ~ P / R ) is a filtered projective limit o f finite g r o u p s {more precisely: o f Galois g r o u p s o f Galois e x t e n - sions c o n t a i n e d in RssP), hence T R is profinite (For a n o t h e r e x p o s i t i o n o f this material, see also D e M e y e r - l n g r a h a m (1971).)
Trang 2314 c h a p 0
L e m m a 3.7 Let R be connected, S/R, T / R be two Galois extensions (with maybe dif- ferent g r o u p s ) , and f : S - - ~ T an R - a l g e b r a h o m o m o r p h i s m T h e n Ker(f) is g e n e r a - ted b y an i d e m p o t e n t
Fropomltion 3.8 [ H a r r i s o n (1965)] Let R b e c o n n e c t e d , S / R a G - G a l o i s e x t e n s i o n with
f i n i t e abelian g r o u p G T h e n there e x i s t s a s u b g r o u p H C G and a c o n n e c t e d H - G a l o i s
e x t e n s i o n U / R such that S - i*U ( w h e r e i: H -* G is the i n c l u s i o n )
the f o l l o w i n g f o r m u l a s in E n d s ( U ) : el.o.e I - el.o o.e I for o • H , eloe i = 0 for o
n o t in H Let ~0 e E n d s ( U ) T h e n ei.~o.e I e E n d s ( S ) ; b y 1.6 (iii), there are s o • $
Trang 2516 chap 0
p h i s m f : tit a ~ A u t ( S / R ) = G Taking E = S, we g e t t h e i d e n t i t y f o r f ~ , hence
v a ( f ) = S This was t h e e a s y case The p r o b l e m a r i s e s w h e n S is n o t c o n n e c t e d But t h e n , t h a n k s t o 3.8, we find an inclusion i: H c G o f a s u b g r o u p H a n d a
c o n n e c t e d H - G a l o i s e x t e n s i o n U / R w i t h i*U - S By n a t u r a l i t y o f v, it t h e n s u f - fices t o find a p r e i m a g e o f U u n d e r u s , b u t this we c a n do since U is c o n n e c t e d Q.E.D
C a r o i l m 7 3.9 F o r any c o n n e c t e d ( c o m m u t a t i v e ) ring R, the abelian f u n d a m e n t a l
g r o u p f l R is i s o m o r p h i c to the abelianization T n / [ T R , T R ]
P r o o f By Thm 3.6, t h e p r o f i n i t e g r o u p TR/[qrR,qr ~] p r o - r e p r e s e n t s t h e f u n c t o r H(R, ) The g r o u p f i r p r o - r e p r e s e n t s t h i s f u n c t o r by definition It is w e l l - k n o w n
F o r t h e g e n e r a l case, one e x h i b i t s f o r S c H(R,G) a canonical m a p
O~s/l~: T®Rrc*S , n * ( T ® R S ) ;
one c h e c k s t h a t t h e definition o f ~ is c o m p a t i b l e w i t h f a i t h f u l l y f l a t b a s e c h a n g e , which r e d u c e s t h e p r o o f t o t h e c a s e w h e r e S is a trivial G - e x t e n s i o n This c a s e can easily be d o n e directly
C o r o l l a r y 3.11 I f R, S, G are as in 3.10, and G is abelian, then the m a p T ® R :
H ( R , G ) ~ H ( S , G ) is a g r o u p h o r n o m o r p h i s m
P r o o f The H a r r i s o n p r o d u c t w a s d e f i n e d w i t h t h e help o f tl* (~: G × G " G t h e
m u l t i p l i c a t i o n map.) By 3.10, the m a p T® R - c o m m u t e s w i t h ~* F r o m this t h e c l a i m
f o l l o w s easily
Trang 263 J 2 Let T / R be an H-Galois extension o f connected rings, H abelian Then
isomorphic to H ( R , H )
t h a t ~ is a g r o u p h o m o m o r p h i s m If ~(~) is trivial, t h e n by 3.3 already ~*T is trivial, w h e r e ~b: H -~ I m ( ~ ) is t h e s u r j e c t l o n defined by ~ But ~b*T is (up t o c a n o - nical i s o m o r p h i s m ) a s u b a l g e b r a o f T, and T is c o n n e c t e d Hence necessarily d~*T = R, and ~ is the trivial h o m o m o r p h i s m
For e a c h ~ e H o m ( H , G ) we have T e a ~ ' ~ T - ~ * ( T ® a T ) by 3.8, and already
T® T I T is t h e trivial /-/-extension Hence t h e c o m p o s i t e map ( T ® - ) ~ is zero
To c o n c l u d e t h e p r o o f , a s s u m e S e H(R,G) s u c h t h a t T® a S is the trivial G - e x - tension By 3.8, we can find an inclusion i: G' c G o f a s u b g r o u p and a c o n n e c t e d
G ' - G a l o l s e x t e n s i o n S' s u c h t h a t S - i*S' Then T® a S - / * ( T e a S ' ) , and by 3.3,
T e a S ' / T is the trivial G ' - e x t e n s i o n This Implies (by 3.4) t h a t there e x i s t s a
T - a l g e b r a h o m o m o r p h i s m T ® a S ' -~ T, hence an R - a l g e b r a h o m o m o r p h i s m ~0: S' -~ T Since S ' is c o n n e c t e d , ~o m u s t be injective by 3.7 Since S' is s e p a r a b l e over
R (every Galois e x t e n s i o n is separable!), we may use t h e main t h e o r e m 2.3 and obtain: S ' - ~b*T f o r s o m e s u r j e c t l o n H -~ G' P u t t i n g t h i n g s t o g e t h e r , we o b t a i n
S = i~'S ' = i*t~*T = ~*T f o r ~ = i~: H -* G
§ 4 R m n l f l c a ~ n
W e have n o t seen many e x a m p l e s o f Galois e x t e n s i o n s yet The p u r p o s e o f this s e c t i o n is t o s e t up a t r a n s l a t i o n machinery which a l l o w s us t o find many Galois e x t e n s i o n s o f rings o f a n u m b e r - t h e o r e t i c a l kind These r e s u l t s are quite well k n o w n t o e x p e r t s , b u t it s e e m s c o n v e n i e n t t o give p r o o f s here
N ~ I f K is an algebraic n u m b e r field (i.e a finite e x t e n s i o n o f Q), t h e n O K
d e n o t e s t h e ring o f i n t e g e r s in K Example: OQ = Z
l ~ m m ' t : I f L / K is a G - G a l o i s e x t e n s i o n o f n u m b e r fields, t h e n G o p e r a t e s also on the r i n g O L, and (OL) c = O L N K = O x
The remark suggests a possibility of O L / O K being a G-Galois extension of rings S o m e care is necessary, as is s h o w n by the following simple example:
Trang 27T l m o ~ m 4 L [ c f A u s l a n d e r - B u c h s b a u m (1959)] Let L / K be a G-Galois extension
o f algebraic n u m b e r fields, S and S' as above Then O L , s , / O r , s is a G-Galois e x t e n - sion i f and only i f L / K is u n r a m i f i e d at all finite places which are not in S
Trang 28u n r a m i f i e d over K outside S and infinity For the injectivity o f or, it s u f f i c e s that R is
an integrally closed domain with f i e l d o f quotients K
Trang 2920 chap 0
The a c t i o n m a k e s s e n s e , since t h e R - a l g e b r a e n d o m o r p h i s m o': X ~-* ~X o f R [ X ]
P r o o f • a ) L e t ~ = : Y T h e n S = R ( n ; u ) = R ~ o t R e $ o~-lR For l_<i_<n-1, ~ i - 1
is a unit in R (Reason: I f ~n d e n o t e s a primitive n t h r o o t o f unity in C, t h e n ( 1 - ~ a ) t l - ~ a Z ) ' ' ( 1 - ~ : - l ) = ( ( X ' Z - 1 ) / t X - 1 ) ) I x = I = n, hence (1-~/) is a unit in
l [ ~ , n - l ] , a n d t h e r e is a ring h o m o m o r p h i s m f r o m Z [ ~ , n - i ] t o R which m a p s ~
t o ~.) F r o m t h i s one s e e s t h a t t h e fixed ring o f 0 in S is R, since 0 o p e r a t e s o n
t h e cyclic s u m m a n d giR as m u l t i p l i c a t i o n by ~i
f i r s t f a c t o r is a unit in S b e c a u s e ~ is {recall ~n = u) The s e c o n d f a c t o r is a l s o a
u n i t in R, since again all ~i_~j ( 0 < i < j < n) a r e units in R H e n c e by definition, S i R
m u l t i p l i c a t i o n H e n c e S-T is t h e fixed ring o f Ker(~) in $®R T, a n d Ker(~) is g e n e -
r a t e d b y t h e pair (o,o -1) e C a ×C a F r o m t h i s one c a l c u l a t e s d i r e c t l y t h a t S T is t h e
R - s p a n o f {1®1, ~®[3 ~n-l®{Sn-t} O b v i o u s l y t h e n - t h p o w e r o f ¢¢®{3 e q u a l s uv, and f r o m t h i s t h e r e q u i r e d i s o m o r p h i s m is easily o b t a i n e d
Trang 30c) W e h a v e t o s h o w : R(n; u) is t r i v i a l i f f u is a n - t h p o w e r in R* N o w o b v i -
o u s l y t h e R - a l g e b r a h o m o m o r p h i s m s E: R(n; u) -, R a r e in b i j e c t i o n w i t h t h e s e t
o f n - t h r o o t s o f u in R ( o r R*) H e n c e , t h i s s e t is n o n e m p t y i f f t h e r e e x i s t s o n e
s u c h E, a n d t h i s is e q u i v a l e n t t o t h e t r i v i a l i t y o f R(n; u) b y L e m m a 3.4 Q.E.D The q u e s t i o n a r i s e s : w h a t is t h e c o k e r n e l o f i~? In t h e p r o c e s s o f a n s w e r i n g
~ m m $,2 The isomorphism classes o f discriminant modules ( o f type n over R) f o r m
an abelian group D i s c ( R , n ) in a natural way
Proof T h e m u l t i p l i c a t i o n o f d i s c r i m i n a n t m o d u l e s is g i v e n b y (M,cp).(M',cp') =
( M ® R M ' , ~ ® ~o') I n o r d e r t h a t t h e m a p ~ ® ~ ' m a k e s e n s e , i t is n e c e s s a r y t o i d e n -
t i f y ( M ® R M ' ) ®n w i t h M®n®s M '®n, a n d R® a R w i t h R O b v i o u s l y , t h e c l a s s o f
(R, id a) g i v e s a n e u t r a l e l e m e n t , a n d a s s o c i a t i v i t y u p t o i s o m o r p h i s m is c l e a r I f (M,~o) is g i v e n , w e m a y c o n s t r u c t a n i n v e r s e b y c o n s i d e r i n g ( M * , ~ *-1) ( h e r e ( - ) *
g r o u p r i n g R [ C ], w e d e f i n e f o r 0 _< i < n:
M "~ = { x e M l a x = ~ t x }
= { x E M I C o p e r a t e s o n x v i a t h e c h a r a c t e r X}
Trang 33e m p l o y e d w o u l d lead us t o o far afield at t h e m o m e n t H e n c e we j u s t s t a t e t h e
s i m p l e s t c a s e here For a p r o o f , see VI §1 or the r e f e r e n c e s given there
T l m t w l m t S.S L e t p b e a n y p r i m e a n d R a ring o f c h a r a c t e r i s t i c p L e t P: R " R b e the h o m o m o r p h i s m o f additive g r o u p s (!) g i v e n b y P ( x ) = x p - x , x ~ R T h e n t h e r e is
Trang 34§ 6 Normal bases and GaJois module structure
The m a t e r i a l o f t h i s s e c t i o n is b a s i c f o r s e v e r a l c h a p t e r s o f t h e s e N o t e s Much o f it is s t a n d a r d , a n d may a l s o be f o u n d in C h a s e - H a r r i s o n - R o s e n b e r g (1965) The m o t i v a t i n g q u e s t i o n is: Given a G - G a l o i s e x t e n s i o n S / R ( o f c o m m u t a t i v e
r i n g s as a l w a y s ) , w h a t c a n b e s a i d a b o u t t h e s t r u c t u r e o f S a s an R [ G ] - m o d u l e ?
I t is c l e a r t h a t t h e o p e r a t i o n o f G o n S m a k e s S i n t o a l e f t R [ G ] - m o d u l e In
G a l o i s t h e o r y o f f i e l d s , it is a c l a s s i c a l r e s u l t t h a t f o r e v e r y G - G a l o i s e x t e n s i o n
L / K , L is f r e e c y c l i c o v e r K[G], w h i c h m e a n s in o t h e r w o r d s t h a t t h e r e is a K - b a - sis o f L o f t h e f o r m { o x l x e G}, f o r s o m e x E G Such a b a s i s is t r a d i t i o n a l l y c a l l e d
6.1 For any G-Galois extension S / R of commutative rings, the R[G]-module
S is inoertible, i,e finitely generated projective of constant rank 1
homomorphism r~ of finite abelian groups, one has a commutative diagram
Trang 35Proof L e t S, T • H{R,G} T h e n S ® a T is a G x G - G a l o i s e x t e n s i o n , a n d i t is c l e a r
t h a t picc~×o{S® a T} = p i c { S ) ® R p i c ( T ) ( p i c a × a is a d h o c n o t a t i o n f o r pic: H{R,G×G) * Pic(R[G×G]), a n d w e i d e n t i f y R[G×G] w i t h R[G]® a R[G] a s u s u a l ) W e a p p l y
Trang 36I ~ f l a l t t o m A G - G a l o i s e x t e n s i o n S / R has a normal basis, i f S is f r e e c y c l i c a s a n
R [ G ] - m o d u l e (G is a f i n i t e g r o u p , S a n d R c o m m u t a t i v e r i n g s , a s a l w a y s )
T h e r e a r e t h e f o l l o w i n g e q u i v a l e n t f o r m u l a t i o n s o f t h i s v e r y i m p o r t a n t d e f i -
n i t i o n :
a) S is f r e e o v e r RIG] ( N o t e t h a t t h e r a n k o f S o v e r R is u n i q u e l y d e f i n e d ) b) There exists x ~ S such that {cxlc e G } is an R-basis of S (such a basis,
or s o m e t i m e s x by itself, is called a normal basis of S over R.)
c) pic(S) is trivial
I}eflmltloL N B { R , G ) denotes the set of all i s o m o r p h i s m classes of G-Galois exten-
sions S / R w h i c h have a n o r m a l basis B y definition, N B ( R , G ) is a subset of H(R,G)
C o r o l l m r y 6 4 I f G is abelian, then N B ( R , G ) is a subgroup o f H ( R , G )
Trang 37Galois d e s c e n t is a f r a g m e n t o f t h e t h e o r y o f f a i t h f u l l y flat d e s c e n t So far,
we only have been using a "trivial part" o f this technique, useful in t e s t i n g w h e -
t h e r a given map is an i s o m o r p h i s m , say There is more t h a n t h a t t o d e s c e n t t h e -
ory Namely, d e s c e n t t h e o r y is also a means o f constructing c e r t a i n m o r p h i s m s and,
m o s t i m p o r t a n t o f all, o b j e c t s over a ring R which are p r e v i o u s l y only given over
a f a i t h f u l l y f l a t e x t e n s i o n S Briefly, one w a n t s t o solve t h e e q u a t i o n S ® R X - Y
f o r X (X m i g h t be an R - m o d u l e , an R - a l g e b r a ) This s e c t i o n is a b o u t this
c o n s t r u c t i v e p a r t o f d e s c e n t t h e o r y , limited t o t h e c a s e o f Galois descent, i.e S / R
a Galois e x t e n s i o n The r e s u l t s will be u s e d f r e q u e n t l y in later c h a p t e r s
The m o t i v a t i n g question, t h e r e f o r e , is: Given a G - G a l o i s e x t e n s i o n S / R ( o f
c o m m u t a t i v e rings), and an S - m o d u l e (or: S - a l g e b r a ) N, when is N, up t o i s o m o r - phism, o f t h e f o r m S® R M, f o r an R - m o d u l e M (or: R - a l g e b r a M ) ? I f 4: S®R M - - * S® a M ' is a h o m o m o r p h i s m o f S - m o d u l e s ( S - a l g e b r a s ) , when does kb have the f o r m
S ® @ ? Galois descent gives a complete answer to both questions; the second one
is slightly easier
C o m m m t i o ~ T o avoid repetition, the w o r d "R-object" in this section is s u p p o s e d to
m e a n consistently either " R - m o d u l e " or "R-algebra" or "R-algebra with action of a given group C by R-automorphisms" All statements are m e a n t simultaneously for these three kinds of objects Accordingly, the w o r d " R - m o r p h i s m " m e a n s either
" R - m o d u l e hem." or "R-algebra hem." or "C-equivariant R-algebra hem." There exists of course a categorical f r a m e w o r k encompassing all these cases and m u c h more, but for our purposes a m o r e d o w n - t o - e a r t h approach is preferable For the general theory, the reader m a y consult Grothendieck (1959)
DefinltioL Let S / R be a G-Galois extension
a) An S - m o r p h i s m f : A -~ B b e t w e e n t w o S - o b j e c t s is called o-linear ( f o r
s o m e o e G), if f ( s a ) = o ( s ) f ( a ) for all s e S, a e A
Trang 38b) A d e s c e n t d a t u m • = (¢ba)ae G on s o m e S - o b j e c t B is a family o f R - a u t o -
m o r p h i s m s ~a o f B s u c h t h a t : Ca is a - l i n e a r f o r all a e G, and Oa¢x = Oar f o r all
a, r e G
E x a m p l e I f B = S ® R A f o r s o m e R - o b j e c t A, t h e n t h e r e is t h e s o - c a l l e d trivial
d e s c e n t d a t u m (¢a)oeG defined by dga(s® a) = a(s)® a f o r s c S, a ~ A
7.L Let B b e an S - o b j e c t , and dp a d e s c e n t d a t u m on it T h e n A = B 0 (which equals by definition { b e B l O a ( b ) = b f o r all a ~ G}) is an R - o b j e c t ; the c a n o n i c a l
m a p ct: S® R A -, B i n d u c e d by A , B is an i s o m o r p h i s m , and the trivial d e s c e n t d a t u m
on S ® R A c o r r e s p o n d s via o~ to the git, e n d e s c e n t d a t u m ~P
Proof It is Immediate t h a t A Is Indeed an R - o b j e c t (recall t h e above c o n v e n t i o n )
The p o i n t is t o s h o w t h a t a is bijective The last s t a t e m e n t o f t h e t h e o r e m is t h e n
a direct c o n s e q u e n c e
Let T be any f a i t h f u l l y flat R - a l g e b r a such t h a t S r (= T ® R S ) is t h e trivial
G - e x t e n s i o n o f T iT = S is a possibility.) It t h e n s u f f i c e s t o s h o w t h a t C~r:
Sr®t~A r ~ B r is an i s o m o r p h i s m N o w since t e n s o r i n g with T p r e s e r v e s kernels,
A r is precisely t h e fixed ring o f all T® Ca' oeG Hence we may c h a n g e n o t a t i o n
and a s s u m e t o begin with: S / R is t h e trivial G - e x t e n s i o n : S = R (~) = ~ a e ~ e a ' R , where t h e e o are t h e s t a n d a r d i d e m p o t e n t s , and G a c t s via x*e o = e a x - t ( o , r e G) Then B likewise s p l i t s in t h e f o r m B = ~ a e a Ba w i t h B o = eaB, and e a c h B a is an
R - o b j e c t One c h e c k s t h a t t h e x - l i n e a r a u t o m o r p h i s m Cr o f B is given by a family
( f o ( r ) ) o e a o f i s o m o r p h i s m s f a ( r ) : B a Bar-1 , and t h e s e i s o m o r p h i s m s s a t i s f y t h e
c o n d i t i o n
f o r - { P ) f a (r) = f o {pr) (a,x,p e G)
T h e r e f o r e t h e B a are c a n o n i c a l l y i s o m o r p h i c t o one R - o b j e c t A' (take e.g A ' = BI),
so B b e c o m e s identified with ~[~aeG A ' , and the d e s c e n t d a t u m • n o w o p e r a t e s j u s t
by index shift One t h e n obtains A = d i a g ( A ' ) c A '(a) = B, and it is n o w obvious
t h a t a: R ( a ) ® ~ A * B is an i s o m o r p h i s m , q,e.d
One a l s o needs t o d e s c e n d m o r p h i s m s This w o r k s as f o l l o w s
P r o p o a l U o n 7 9 Let A 1, A 2 b e two R - o b j e c t s , g: S ® R A l ~ S ® R A ~ an S - m o r p h i s m , and (~Pa(i))aec the trivial d e s c e n t d a t u m on S e R A t (i = 1,2), T h e n g is o f the f o r m S® f f o r s o m e R - m o r p h i s m f : A l ~ A 2 i f f ¢ <o~)g = g ¢ o ~l) f o r all a e G M o r e o v e r , f is
u n i q u e i f it exists
P r o o f The u n i q u e n e s s o f f is immediate f r o m t h e f a c t t h a t S is f a i t h f u l l y f l a t
over R
If g = S ® f , t h e n one c h e c k s t h e f o r m u l a ¢ ~ z ) g = g~0¢t~ directly, j u s t using
the definitions The o t h e r implication is s h o w n as f o l l o w s : A 2 e m b e d s into S®~ A z
by f a i t h f u l f l a t n e s s Moreover, A z is c o n t a i n e d in t h e fixed object A o f all Od2)
Trang 3930 chap 0
oe G If A w e r e strictly larger than A 2, then the inclusion t: A 2 -~ A w o u l d not be
an isomorphism, contradicting the fact that S®t: S ® R A 2 ~ S ® R A - S ® a A 2 is an
i s o m o r p h i s m by 7.1 Since A t is fixed under all ~t>, our hypothesis implies that
g ( A I} is fixed under all ~ 0 ~2), hence contained in A 2 Let f glAv This gives a well-defined R - m o r p h i s m f: A I -~ A2, and S ® f = g
A s an application, w e prove:
Propomltion 7.3 Let S / R be a G-Galois extension of connected rings Then A u t ( S / R )
is equal to G
Proof W e s h a l l u s e t h e S - i s o m o r p h i s m h: S® a S - - - S (~) N o w S® R S c a r r i e s t h e trivial d e s c e n t d a t u m ( ~ o ) = (o® i d s ) a e ~, and d e s c e n d i n g a l o n g (~Po) gives b a c k S,
as we have s e e n in t h e p r o o f o f 7.2 Let us t r a n s p o r t ( ~ o ) via h t o a d e c e n t d a t u m ( ~ o ' ) on S ~a) A s h o r t c a l c u l a t i o n s h o w s q ~ o ' ( ( x ~ ) t ~ a ) = (o(xo-l~))~e a-
c a l l y isomorphic to Zp, the sequence (o)ne N corresponding to l ~ Z p
L e t R b e a c o m m u t a t i v e ring The group Hi R, Zp) o f Zp-extensions o f R
is d e f i n e d as t h e p r o j e c t i v e limit o f t h e s y s t e m
Trang 40" n~ H(R, Cp2) n : H(R, Cp)
Thus, the e l e m e n t s o f H(R, Zp) are s e q u e n c e s ( A ) h e ~ with A ~ H(R, Cpn) and
~n*(An+l) = A n f o r all neIN Such s e q u e n c e s are also c a l l e d coherent, or towers
* A
l ~ m a r k Since n ( a÷l ) is j u s t t h e fixed ring o f Ker(Tr a) in An l ( b e c a u s e ~ is
o n t o ! ) , one may r e g a r d A as a subring o f A + t f o r all n, and it m a k e s s e n s e t o
Define x(x) t o be ~n(x) This is i n d e p e n d e n t o f t h e choice o f n, t h a n k s t o the
c o m p a t i b i l i t y c o n d i t i o n n~(A,÷ 1) = A (If Ao~ is c o n n e c t e d , one can even s h o w
t h a t Aut(Aoo/R) - lin~_ Cpa, cf 7.3.) This justifies t h e t e r m i n o l o g y " Z p - e x t e n s i o n "
Since projective limits p r e s e r v e m o n o m o r p h i s m s , t h e g r o u p NB(R, Zp) is a
s u b g r o u p o f H(R, Zp) We t h u s may define P(R, Zp) = H(R, Zp)/NB(R, Zp) Caution:
it is n o t c l e a r w h e t h e r P(R,Z v) - lirn(_P(R, Cp~) If all g r o u p s NB(R, C p ) happen
t o be finite, t h e n this i s o m o r p h i s m does hold, since t h e derived f u n c t o r lirn~ 1~ is zero on ( NB( R, Cp n))n Cf J e n s e n (1972)
The t o p o l o g y on Zp - lim<_ Cp is the p r o f i n i t e t o p o l o g y , and induced f r o m the p r o d u c t t o p o l o g y on ] - I ~ Cp In the c o n t e x t o f §3, we t h e n have the f o l - lowing r e s u l t :
I.¢.,mm 8.t- For connected rings R, there is a canonical isomorphism H(R, Zp) *
H o m c o t ( D a , Z p) (which is the same as Homcont(ur'a.Zp) by Cor 3.9)