1. Trang chủ
  2. » Khoa Học Tự Nhiên

Lecture notes in mathematics

267 10 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Lecture Notes in Mathematics
Tác giả Klaus Barbey, Heinz König
Người hướng dẫn C. R. DePrima
Trường học Universität Regensburg
Chuyên ngành Mathematics
Thể loại edited volume
Năm xuất bản 1977
Thành phố Berlin
Định dạng
Số trang 267
Dung lượng 10,22 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Lecture Notes in Mathematics Edited by A.. Eckmann Series: California Institute of Technology, Pasadena... All rights are reserved, whether the whole or part of the material is concer

Trang 1

Lecture Notes in

Mathematics

Edited by A Dold and B Eckmann

Series: California Institute of Technology, Pasadena

Trang 2

AMS Subject Classifications (1970): 46J 10, 46J 15

ISBN 3-540-08252-2 Springer-Verlag Berlin • Heidelberg • New York ISBN 0-38?-08252-2 Springer-Verlag New York • Heidelberg • Berlin

This work is subiect to copyright All rights are reserved, whether the whole

or part of the material is concerned, specifically those of translation, re- printing, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks

Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to

Trang 3

The p r e s e n t w o r k w a n t s to be the s y s t e m a t i c p r e s e n t a t i o n of a f u n c -

t i o n a l - a n a l y t i c t h e o r y It is an a b s t r a c t v e r s i o n of t h o s e p a r t s of

c l a s s i c a l a n a l y t i c f u n c t i o n t h e o r y w h i c h c a n be c i r c u m s c r i b e d b y b o u n d a r y

v a l u e t h e o r y a n d H a r d y s p a c e s H p T h e f a s c i n a t i o n of t h e f i e l d c o m e s f r o m the fact t h a t f a m o u s c l a s s i c a l t h e o r e m s of t y p i c a l c o m p l e x - a n a l y t i c fla-

Trang 5

C h a p t e r I B o u n d a r y V a l u e T h e o r y f o r H a r m o n i c a n d H o l o m o r p h i c

F u n c t i o n s i n t h e U n i t D i s k

I H a r m o n i c F u n c t i o n s I 2 P o i n t w i s e C o n v e r g e n c e : T h e F a t o u T h e o r e m a n d i t s C o n v e r s e 6 3 H o l o m o r p h i c F u n c t i o n s 12

4 T h e F u n c t i o n C l a s s e s H o I # ( D ) a n d H # ( D ) 16

N o t e s 21

C h a p t e r II F u n c t i o n A l g e b r a s : T h e B o u n d e d - M e a s u r a b l e S i t u a t i o n 2 2 I S z e g 6 F u n c t i o n a l a n d F u n d a m e n t a l L e m m a 2 2 2 M e a s u r e T h e o r y : P r e b a n d s a n d B a n d s 26

3 T h e a b s t r a c t F a n d M R i e s z T h e o r e m 31

4 G l e a s o n P a r t s 34

5 T h e a b s t r a c t S z e g ~ - K o l m o g o r o v - K r e i n T h e o r e m 36

N o t e s 42

C h a p t e r I I I F u n c t i o n A l g e b r a s : T h e C o m p a c t - C o n t i n u o u s S i t u a t i o n 44 I R e p r e s e n t a t i v e M e a s u r e s a n d J e n s e n M e a s u r e s 44

2 R e t u r n t o t h e a b s t r a c t F a n d M R i e s z T h e o r e m 4 7 3 T h e G l e a s o n a n d H a r n a c k M e t r i c s 4 8 4 C o m p a r i s o n o f t h e t w o G l e a s o n P a r t D e c o m p o s i t i o n s 54

N o t e s 5 8 C h a p t e r IV T h e A b s t r a c t H a r d y A l g e b r a S i t u a t i o n 59

I B a s i c N o t i o n s a n d C o n n e c t i o n s w i t h t h e F u n c t i o n A l g e b r a S i t u a t i o n 6 0 2 T h e F u n c t i o n a l ~ 66

3 T h e F u n c t i o n C l a s s e s H # a n d L # 69

4 T h e S z e g ~ S i t u a t i o n 76

N o t e s 79

C h a p t e r V E l e m e n t s o f A b s t r a c t H a r d y A l g e b r a T h e o r y 81

Trang 10

w e see t h a t Harm~(D) c HarmP(D) c H a r m l ( D ) We f o r m u l a t e the b o u n d a r y

b e h a v i o u r of the f u n c t i o n s in HarmP(D) in the s u b s e q u e n t p r o p o s i t i o n s

~(c(s)~c(s) ~

ii) L e t I ~ < ~ F o r F£LP(1) c o n s i d e r the f u n c t i o n

f = <Fl>:f(z) = / P ( z , s ) F ( s ) d l ( s ) V z6D

S I~ F u r t h e r m o r e for R+I w e h a v e c o n v e r -

Proof: I) < 8 > 6 H a r m ( D ) for 86ca(S) is o b v i o u s s i n c e for r e a l - v a l u e d

8 the d e f i n i t i o n r e p r e s e n t s <8> as the real p a r t of a f u n c t i o n in HoI(D) 2) In o r d e r to p r o v e iii) it s u f f i c e s to s h o w the u n i f o r m c o n v e r g e n c e fR÷F for R+I F o r O~R<I and z6S w e h a v e

Trang 11

S S

- 2~ f P ( R ' e i t ) ( F ( z e l t ) - F ( z ) ) d t '

and hence for O<~<z after s u b d i v i s i o n into !tl~6 and d ~ I t I ~

IfR(Z)-F(z) i ~2~_~6 p(R, e i t ) ~ ( 6 ) d t + 2 ]IFII P(R,e i6) =< ~(~) + 2 IIFII P(R,e i6) ,

where ~ is the modulus of c o n t i n u i t y of the function F6C(S) T h e r e f o r e

lim sup Hf R- F H ~ ~(6> for each o<6<~,

R+I

SO that l{fR-F{l+o for R+I

3) We next prove i) For f=<e>6Harm(D) and O<R<I we have

as in the proof of 1 2 Thus fEHarmP(D) and N p f ~ IIFI P(%)

case 1< p<~ we use the fact that C(S) is dense in LP(I) Thus for HEC(S)

Trang 12

I/S HfRd%l = < IIHIILI(%) [IfRII L ~(l) =< IIHII L 1 (l)N~f for O<R<I=

i m p l i e s t h a t IfS NFdll % IIHII L I (l) N ~ f for e a c h H 6 L I (X) T h i s m e a n s

[IFII ~ ~ N f, so t h a t w e o b t a i n N f= IIF!I ~ QED

Trang 13

S ii) F o r 1 ~ q < ~ t h e c o n j u g a t e e x p o n e n t w e h a v e L P ( x ) = L q ( I ) " In v i e w o f IIfRI[L p <N f < ~ f o r O < R < I t h e r e e x i s t s a w e a k • l i m i t p o i n t F 6 L P ( 1 ) o f

Trang 15

2t + 2~

T h e p r o o f s h a v e t o b e b a s e d o n t h e r e l a t i o n

e +z d f(z) = P ( z , e l t ) d @ ( t ) = / R e it @(t) V z6D

Trang 16

f(z) = CS + S - ~ - ~ d ~ ( x ) = C S + S - - ~ - - - ~ ( X ) ,

w i t h ~ : ~ ( x ) = ~ ( x ) - ~ ( - x ) for x~O a f u n c t i o n of b o u n d e d v a r i a t i o n w i t h the

n o r m a l i z a t i o n ~ ( x ) = ½ ( ~ ( x + ) + ~ ( x - ) ) Vx>O and ~(O)=0, and ~ r e a l - v a l u e d and

m o n o t o n e i n c r e a s i n g if ~ is so It follows that f ( z ) ÷ A for z+1 is e q u i v a - lent to

2 ~ ~ d~(x) for s>O

F: F(s) = ~ s2+x 2

T h e n ~(x) ÷ a for x+O implies that F ( s ) ÷ a for s+O

x

2.5 L O O M I S THEOREM: Let ~ : [ O , ~ [ ÷ ~ be monotone i n c r e a s i n g and b o u n d e d

w i t h ~ ( 0 ) = 0 (and F as above) T h e n F ( s ) ÷ a for s%O i m p l i e s that ~(x) ÷ a

2 S u p { i ~ ( X ) _ a ] : O < x < 6 } + 2 s

Trang 20

w h i c h m e a n s t h a t for e a c h z6D t h e m e a s u r e P ( z , - ) l (and in p a r t i c u l a r for z=O the m e a s u r e I itself) is m u l t i p l i c a t i v e on A ( D ) T h e same is

t r u e for H~(D)

3.1 REMARK: L e t 86an(D) a n d F 6 A ( D ) T h e n F86an(D) a n d < F S > = < F I > < 8 >

Proof: L e t h = < e > and f=<Fl> F o r O~R<I t h e n FhR6A(D) and

t a i n s the p o l y n o m i a l s i i i ) ~ i i ) is t r i v i a l , i i ) ~ i ) a n d the last a s s e r -

ii) L e t 1~p<~ T h e n H P ( D ) c L P ( 1 ) is the L P ( 1 ) - n o r m c l o s u r e of A(D) (and h e n c e of t h e s u b a l g e b r a of the p o l y n o m i a l s )

iii) H ~ ( D ) c L ~ ( I ) is the w e a k * c l o s u r e of A(D) (and h e n c e of the

Trang 21

of 3.2 the m e a s u r e s 06ca(S) w h i c h a n n i h i l a t e A(D) are the same as t h o s e

w h i c h a n n i h i l a t e the p o l y n o m i a l s T h e d e n s i t y of the s u b a l g e b r a of the

p o l y n o m i a l s a l s o has a s i m p l e d i r e c t proof: For F6A(D) and f = < F l > w e

h a v e llfR-Fll+Ofor R+I, and in v i e w of the T a y l o r s e r i e s e x p a n s i o n e a c h

fR for O~R<I is the u n i f o r m l i m i t of p o l y n o m i a l s In o r d e r to p r o v e t h e

D i r i c h l e t p r o p e r t y let @6ca(S) a n n i h i l a t e ReA(D) a n d h e n c e F a n d F for

F £ A ( D ) It f o l l o w s t h a t / s U d S ( s ) = 0 V n 6 $ a n d h e n c e e=O in v i e w

S the W e i e r s t r a S t h e o r e m

ii)iii) In v i e w of 3.2 HP(D) c o n s i s t s of the F6LP(I) w i t h /snF(s)dl(s)

3.6 L E M M A : L e t 0 6 an(D) be ~ O T h e n t h e r e e x i s t s a n n ( n = O , 1 , 2 )

s u c h t h a t

1 Z n e 6 an(D) and Sf Z ~ d n e + O,

w h e r e Z : Z ( s ) = s is the i d e n t i t y f u n c t i o n

Trang 22

P r o o f of 3.6: F r o m 3.2 we k n o w that ~ j s n d @ ( s ) = O Vn~1 Thus in v i e w

S

of the W e i e r s t r a B t h e o r e m we have / s - n d Q ( s ) 4 0 for some n>=O and hence

S for a s m a l l e s t n>=O T h e n 3.2 shows that this n~O fulfills the a s s e r - tion QED°

P r o o f of 3 5 ~ 3.4: i) L e t @£an(D) and @=~+~ w i t h l - c o n t i n u o u s ~ and

l - s i n g u l a r ~ T h e n @ - @ ( S ) I = ( e - @ ( S ) I ) + ~ a n n i h i l a t e s A(D) so that f r o m 3.5 we see that ~ l i k e w i s e a n n i h i l a t e s A(D) ii) In p a r t i c u l a r i) shows that a l - s i n g u l a r a n a l y t i c m e a s u r e m u s t a n n i h i l a t e A(D), that is has an integral=O But if n o w the a b o v e B w e r e 40, then 3.6 w o u l d lead to a

l - s i n g u l a r a n a l y t i c m e a s u r e w i t h integral 40 This c o n t r a d i c t i o n shows that 8 m u s t be = O QED

3.7 J E N S E N INEQUALITY: Let F6A(D) and f=<Fl> T h e n

log]f(z) I ~ / P ( z , s ) l o g I F ( s ) Idl(s)

s

H e n c e the same is true for F6HI(D)

3.8 COROLLARY: If F6HI(D) is 4 ° then l o g I F I 6 L 1 ( 1 )

N o w IIfR-FII L 1 ( 1 ) ÷ O for R+I so that for a s u i t a b l e s e q u e n c e R(n)+1 we

have f R ( n ) + F p o i n t w i s e and u n d e r an L l ( 1 ) - m a j o r a n t T h e n the same is true for log(IfR(n) I+c) ÷ log(IFl+e) It f o l l o w s that

loglf(z) I ~ f P ( z , s ) l o g ( I F ( s ) l+e)dl(s) V z6D and e>O,

S and for s%O the r e s u l t follows from B e p p o Levi Proof of 3.8: If F40 then f ( z ) 4 0 for some z6D Thus the a s s e r t i o n is obvious QED

For the last t h e o r e m we i n t r o d u c e the f u n c t i o n a l s

DP:DP(o) = I n f { / I F I P d ~ : F £ A ( D ) w i t h f(O)=1} V ~ 6 Pos(S),

S

Trang 23

w h e r e 1<p< ~ Thus o < D P ( o ) < a ( S )

3.9 S Z E G 0 - K O L M O G O R O V - K R E I N THEOREM: For 1<=p<~ we h a v e

d~ dl) DP(o) = exp(f ( l o g ~ )

4 The F u n c t i o n C l a s s e s HoI#(D) and H#(D)

In the future a b s t r a c t t h e o r y the f u n c t i o n class w h i c h c o r r e s p o n d s

to the class H#(D) to be d e f i n e d in the p r e s e n t s e c t i o n w i l l be far m o r e

i m p o r t a n t than the f u n c t i o n c l a s s e s w h i c h c o r r e s p o n d to the HP(D) for finite p~1 As b e f o r e our m a i n c o n c e r n w i l l be the t r a n s i t i o n f r o m D

4.1 P R O P O S I T I O N : For f6Hol#(D) the r a d i a l limit

F(s) := lim fR(s) exists for l - a l m o s t all s6S,

R+I

Trang 24

and p r o d u c e s an e l e m e n t F6H#(D) The map f ~ F thus d e f i n e d is a b i j e c - tion H O I # ( D ) ÷ H # ( D )

Proof:i) Let f£Hol#(D), and take f u n c t i o n s f 6HoI~(D) as r e q u i r e d in

n the d e f i n i t i o n w i t h g n : = f n f 6 H o l ~ ( D ) Let Fn,Gn6H~(D) the r e s p e c t i v e boun-

d a r y functions T h e n IF <I and

n =

f IFn-I 12dl < 2-2Re / Fnd~ = 2 { 1 - R e F n ( O ) ~ ÷ O

T h e r e f o r e after t r a n s i t i o n to a s u i t a b l e s u b s e q u e n c e we can a s s u m e that

F +I p o i n t w i s e , ii) We c h o o s e a B a i r e set NcS w i t h ~ (N)=O such that in

n

each p o i n t s6S-N I) r a d i a l c o n v e r g e n c e fn (Rs)÷Fn(s) and g n ( R S ) ÷ G n ( S ) for R+I takes p l a c e for each n>1, and 2) the r e p r e s e n t a t i v e s S÷Fn(S) of the Fn6H~(D) thus o b t a i n e d on S-N f u l f i l l s Fn(S)÷1 for n÷ ~ C o n s i d e r now the e q u a t i o n f n ( R s ) f ( R s ) = g n ( R S ) for s6S-N and O~R<I For fixed s6S-N

c h o o s e an n> 9 w i t h Fn(S) t O T h e n f n ( R S ) + O for R s u f f i c i e n t l y close to I Thus the limit F ( s ) : = l i m f ( R s ) exists in each p o i n t s6S-N The e l e m e n t

R+I F6L(I) thus p r o d u c e d f u l f i l l s F n F = G n for all n> 1 T h e r e f o r e F6H#(D) iii) In case F=O we have G n = O and hence g n = O for all n>1 In v i e w of fn÷1 this i m p l i e s that f=O T h e r e f o r e the a b o v e m a p f~F is injective iv) L e t us n o w start w i t h a f u n c t i o n F6H #(D), and take f u n c t i o n s F 6H~(D) n

4.2 C O R O L L A R Y : Let f6Hol#(D) T h e n for l - a l m o s t all s6S the a n g u l a r limit

Trang 26

+I and h ef=exp(fn)6Hol~(D) Thus h n : = e x p ( f n - f ) 6 H o l ~ ( D ) w i t h lhnI~1 and h n n

Vn~1 T h e r e f o r e e f 6 HoI#(D) ii) Let @=~+8 w i t h l-continuous ~ and l-sin- gular 8 T h e n ~ 8>=0 And f=u+v w i t h

and let Fn,Gn6H~(D) be the respective b o u n d a r y functions N o w Re v(Rs)÷O

for Rfl for l-almost all s6S after 2.2 Thus JgnJ=Jfnle Rev implies that

JGnJ=JFnJ<l and hence IgnJ=IfnleReV<1 and hence eReV<1 since fn "

fore Re v = O and hence B=O QED

4.4 COROLLARY: Let F6Re L1(1) and

4.6 J E N S E N INEQUALITY: Let f£Hol#(D) w i t h b o u n d a r y f u n c t i o n F£H#(D)

In case f#O we have logjFl6L1(1) and

logJf(z) j £ ] P(z,s)logjF(s)ldl(s) v zeD

S

= +I and gn:=fnf6 Proof: Take functions fn£HOl (D) with JfnJ<1 and fn

6HoI~(D) Vn~1, and let Fn,Gn6H~(D) be the r e s p e c t i v e b o u n d a r y functions

Trang 27

T h e n Gn=FnF We can of c o u r s e a s s u m e fn#O and hence gn~O Thus loglFnl, logIGnlfL1(~) from 3.8 and hence l o g l F l 6 L l ( ~ ) A n d from 3.7 we have for z6D

l°glgn(Z) i ~ / P ( z , s ) l o g I G n ( S ) Idl(s) ~ f P ( z , s ) l o g l F ( s ) Idl(s)

in v i e w of IFnl~1, from w h i c h the result follows for n÷~ QED

4 7 P R O P O S I T I O N : • (HoI#(D)) x := the set of i n v e r t i b l e e l e m e n t s of the

a l g e b r a HoI#(D) c o n s i s t s of the f u n c t i o n s h=ce f, w h e r e

s+z f:f(z) = / ~ L ~ F(s)dl(s) V z6D w i t h F £ R e L I ( I ) ,

= Vz6D is in HoI+(D) and its b o u n d a r y f u n c t i o n F=I-~-~6H (D) has ReF=O

S o - F 6 H # ( D ) has R e ( - F ) > O as well, but it c o r r e s p o n d s to the f u n c t i o n -f6Hol#(D) w h i c h is ~HoI+(D) so that -F~H+(D)

To e x p l a i n the p h e n o m e n o n recall from 4.3 that to f6Hol+(D) t h e r e exists a m e a s u r e ~£Pos(S) such that Re f =<8> and hence

Trang 29

o n t h e s u b s p a c e A m o d ~ c L P ( o ) a n d is L P ( o ) - n o r m c o n t i n u o u s t h e r e , t h a t

Trang 32

o f A m o d o O t h e r w i s e t h e r e w e r e a n f E L q ( o ) w i t h ~ u f d o = O V u E A a n d

w i t h ~ P f d d * O B u t t h e n f E T a n d O = [ f d d = e(f) = c ~ f P d o w h i c h i s a

c o n t r a d i c t i o n

~n V u 6 A T h u s f r o m H a h n - B a n a c h a n d 3) W e k n o w t h a t l~(u) I ~ u I L p ( o )

Trang 33

P r o o f : C o m b i n e 1.4 w i t h 1.2 QED

1.6 C O R O L L A R Y : L e t 8 £ c a ( X , Z ) w i t h ~(f) = f f d 8 V f 6 A T h e n t h e r e

e x i s t s an m 6 M ( ~ ) w h i c h is << 9 In p a r t i c u l a r M ( ~ ) ~

P r o o f : W e h a v e f l f l d l S l _>_ IffdSl > I V f 6 A w i t h <0(f) = I a n d h e n c e DI(IsI) > 0 QED

Trang 34

e: = (oT-e m) + e~ , II e,~il = It e~-%lI + It o.~ il •

tl e~ I1 - It emil = tl emil - II e~ II = II e~-emll •

Trang 35

iii) I n t h e a l g e b r a s i t u a t i o n c o n s i d e r e d i n t h e p r e s e n t c h a p t e r f o r

e a c h ~ E Z ( A ) t h e s e t M(~) = M ( A , ~ ) c P r o b ( X , E ) is a p r e b e n d In f a c t ,

f o r m l £ M ( ~ ) ( 1 = 1 , 2 , ) w e h a v e m : = ~ 2 - 1 m 1 6 M ( ~ ) a n d m l < < m V I ~ I

1=I

Trang 40

~ £ Z ( A ( D ) ) is r e p r e s e n t e d b y a u n i q u e p r o b a b i l i t y m e a s u r e : M(~) = { m ( ~ ) }

Ngày đăng: 27/05/2022, 09:19

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN