1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Tài liệu Bài giải mạch P6 pptx

40 269 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Solution to Electrical Circuit Problems - Chapter 6
Trường học University of Electric Engineering and Technology
Chuyên ngành Electrical Engineering
Thể loại Giáo trình bài tập lớn
Thành phố Hanoi
Định dạng
Số trang 40
Dung lượng 1,44 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Under dc conditions, the circuit becomes that shown below: 4C 1eq... Because this is a totally capacitive circuit, we can combine all the capacitors using the property that capacitors in

Trang 1

2

1Cv2

1

1 (40)(80)2

480 mA

Chapter 6, Solution 4

)0(vidtC

1For 0 < t < 1, i = 4t,

1

v dt + 0 = 100t2 kV v(1) = 100 kV

Trang 2

1v

1t0,

kVt100

2 2

Chapter 6, Solution 6

6

10x

30

dt

dv

C

i= = − x slope of the waveform

For example, for 0 < t < 2,

3

10x2

10dt

10x10x

3 3

10x50

1)

t(vidtC

Trang 3

(a) ACe t BCe t

AC

i(0)=2=−100 −600 → 5=− −6 (2)

B A v

.2410

41160010

461

s3t116,

s10

,16

µµ

µ

t t

v

Trang 4

s10,1016

6

6

µµ

µ

t x

s3t10,

s10

,kA32)

(

µµ

µ

t t

i

Chapter 6, Solution 11

v = ∫t +

oidt v(0)C

3

10x

1

v(1) = 10 kV For 1 < t < 2,

kV10)1(vvdtC

3

6 ( 40x10 )dt v(2)10

x

1v

= -10t + 30kV Thus

2t1,

kV10

1t0,

kVt10

Chapter 6, Solution 12

π

−π

=

= x10− x60(4 )( sin4dt

dvC

o 21.6 sin8pdt

π

π88

6.cos

o = -5.4J

Trang 5

Under dc conditions, the circuit becomes that shown below:

4C

1eq

Trang 6

w20 = 2 = x20x10− 6x1002 =

2

1Cv

Cv

2 1

80

80

++

(b) Ceq = 5 + [6 || (4 + 2)] = 5 + (6 || 6) = 5 + 3 = 8F

(c) 3F in series with 6F = (3 x 6)/9 = 6F

13

16

12

1C

1eq

=++

Ceq = 1F

Trang 7

For the capacitors in parallel = 15 + 5 + 40 = 60 µF

1 eqC

Hence

10

160

130

120

1C

1eq

=++

20

8

Trang 8

6µF in series with 6µF = 3µF 3µF in parallel with 2µF = 5µF 5µF in series with 5µF = 2.5µF Hence Ceq = 2.5µF

120

160

1C

1

1

eq

=++

eq

Thus

Ceq = 10 + 40 = 50 µF

Trang 9

(a) 3µF is in series with 6µF 3x6/(9) = 2µF

1CC

Trang 10

vs = v1 + v2 = 2

1

2 1 2 2 1

C

CCvvC

=

2 1

1

CC

C+

=v

2 1

2

CC

Cv

1C

QC

Q =

2

2 1 2 2 2

C

CCQQC

=+

or

Q2 =

2 1

2CC

C+

s 2 1

1

CC

CQ

1

CC

C+

=

2 1

2

CC

C+

=i

2 2

C1

= 393.8mJ

Trang 11

(a)

20

720

110

15

1C

1C

1C

1C

1

3 2 1 eq

=++

=++

12

2 2

eqvC

40

130

130

110

140

110

1

403 + + =

Ca = 5µF

30210

1300

1400

Trang 12

1300

1400

75.23x

in series with C =

5

C3

2

C52

C3Cx

2C

C

1C2

1C2

1C

1eq

=+

=

Ceq = C

Trang 13

vo = ∫t +

oidt i(0)C

1

For 0 < t < 1, i = 60t mA,

kVt100tdt6010

x

10

o 6

3

vo(1) = 10kV For 1< t < 2, i = 120 - 60t mA,

10

t + = [40t – 10t2]1 10kV

1t0,

kVt10)

3t1,

mA20

1t0,tmA20)t(

is

Ceq = 4 + 6 = 10µF

)0(vidtC

1

o eq

3

t2010

x10

10v

kV1t

Trang 14

kV1t2

1t0,

kVt)t(v

2 2

dt

dv10xdt

dvC

1 1

3t1,

mA12

1t0,

tmA12

dt

dv10x4dt

dvC

2 1

3t1,

mA8

1t0,

tmA8

Chapter 6, Solution 32

(a) Ceq = (12x60)/72 = 10 µF

13001250

501250

)0(30

1012

0

0

2 1

2 6

e x

v

230250

20250

)0(30

1060

2 2

2 6

e x

v

(b) At t=0.5s,

03.138230

250,

15.8401300

w µF

J 1905.0)03.138(10202

w µF

J 381.0)03.138(10402

w

Trang 15

Because this is a totally capacitive circuit, we can combine all the capacitors using the property that capacitors in parallel can be combined by just adding their values and we combine capacitors in series by adding their reciprocals

3F + 2F = 5F 1/5 +1/5 = 2/5 or 2.5F The voltage will divide equally across the two 5F capacitors Therefore, we get:

VTh = 7.5 V, CTh = 2.5 F

Chapter 6, Solution 34

i = 6e-t/2

2 /

2

1)6(10x10dt

6.0

10x60t/

VL

3

200 mH

Trang 16

Chapter 6, Solution 36

V)t2sin)(

2)(

12(10x4

1dt

diL

diL

∫ =∫

Jt200cos200

6

9 11/200

o

= =−48(cosπ−1)mJ= 96 mJ

Chapter 6, Solution 38

(e 2te )dt10

x40dt

diL

v= = − 3 − 2 t − − 2 t

= 40(1−2t)e− 2 tmV t>0

Trang 17

1idt

diL

v= → = ∫0t +

1dt)4t2t3(10x200

1

i= −3∫0t 2 + + +

1)t4tt

40

-ms3t110t,

-20

ms10

ms3t1,10x10

-ms10

,10

200

ms3t1V,

200

-ms10

Trang 18

t 2 t

2

1)0(ivdtL

1)0(ivdtL

Trang 19

w = L Li ( )

2

1)t(Li2

1idt

2 t

10x80

t o

5

1tivdtL

1

= 0.25t2 kA For 1 < t < 2, v = -10 + 5t

1

3 ( 10 5t)dt i(1)10

x10

1i

1t0,

kAt25.0)

t

(

i

2 2

Trang 20

= (3)

24

4

iL 2A, vc = 0V

L2

1

C2

10)

2R

R10Ri

vc L

+

=

=

Trang 21

2 6

2

c

c

)2R(

R100x10x80Cv

2

1

L

)2R(

100x10x2Li

2 6

)2R(

100x10x)2Rx(

R100x10

+

+ vC1

=+

=

=

64

30i

Trang 22

160

Trang 23

[5(8 12) 6(8 4)]

8106

L

L Lx L

L L L

5.02

5.025

.0//

++

=+

Trang 24

5L

L3

5LxL

3

2L

L

85

dt

di4vv

i = i1 + i2 i2 = i – i1 (3)

3

vdt

diordt

di3

and

0dt

di5dt

di2

di2

di7dt

di5dt

di5dt

di2

dt

di73

51

35dt

Trang 25

vs = 1+ 2

2 1

sLL

vdt

dt

di

L2

2 =v

,vLL

L

2 1

1

2 1

2

LL

Lv

diLv

2

1 1 2

2 1

i = +

2 1

2 1 2

1

2 1 s

LL

LLvL

vL

vdt

didt

didt

=+

=+

LLL

1vdtL

1

2 1

2 1 1 1

2 1

LLL+

Trang 26

=

dt

diLL

LLL

1vdtL

1

2 1

2 1 2 2

2 1

LL

L+

Chapter 6, Solution 60

8

155//

=

eq L

di L

2 2

0

A5.15.05

.12)

15(5

12)0()

s

2030

diL

diL

8.0

2

1 t t

Trang 27

(a) 40mH

80

60202560//

eq

x i

dt t v L

i dt

3

3

)0()1(

1.0)0(12

1040

10)

0()(1

Using current division,

i i i

i

i

4

1,

.0)0(75.0)

-A )08667.01

,2

30

,2

2 1

1

t dt

di dt

,4

42

,0

20

,4

2

2

t t

t dt

di dt

di

L

v

Trang 28

v1

v2

34/12)

A 93)]

()0([)()

(b) -12 + 4i(0) + v=0, i.e v=12 – 4i(0) = 36 V

(c) At steady state, the inductor becomes a short circuit so that v= 0 V

Trang 29

(a) = 2 = 2 =

1 1

2

1iL2

1

= − 2 =

20 (20)( 2)2

dt

diL

v=

ovdt i(0)L

1i = 1 − ∫t12 dt + 0 mA

o

10x60

i 50(1 - cos 4t) mA

mH2440

mV)t4cos1)(

50(dt

d10x24dt

diL

= 4.8 sin 4t mV

Trang 30

= - 5t + 30 mV

Trang 31

Thus vo(t) is as shown below:

2 5

6

5

7 5

5 0

1

=C

1dtvCR

1dtvC

1 1

o

−+

For the given problem, C = 2µF,

R1C = 1 R1 = 1/(C) = 1006/(2) = 500 kΩ

R2C = 1/(4) R2 = 1/(4C) = 500kΩ/(4) = 125 kΩ

R3C = 1/(10) R3 = 1/(10C) = 50 kΩ

Trang 32

10xx10x10

10x.010x20

−+

R

At node b,

dt

dvCR

vvR

Trang 33

v2

Combining (1) and (2),

dt

dv2

RCv

v

o o

dv2.0dt

dvRC

3t1,V2

1t0,V2

2

Trang 34

Chapter 6, Solution 75

,dt

dvRC

Chapter 6, Solution 76

,dt

5t0,10dt

=

110

Trang 35

o i

Thus vi is obtained from vo as shown below:

dvo(t)/dt

vo(t) (V)

4 -4

4 -4

2

vdt

dv2t2sin

Trang 36

Chapter 6, Solution 79

We can write the equation as

)(4)(t y t

− +

−+

− +

+

sin2t

−+

vo

R

Trang 37

From the given circuit,

dt

dvk200

k1000v

k5000

k1000)

t(dt

v

o 2

o 2

−Ω

dv5dt

vd

o

o 2

o

2

=++

Chapter 6, Solution 81

We can write the equation as

)(25

2

2

t f v

Trang 39

qI

150(36 20)

1t0,4i

1t0,L4dt

diLv

1t0,mV5v

1

CC

=++

11

For the parallel-connected strings,

C10C10

s

Trang 40

(b) vT = 8 x 100V = 800V

2 T

2

1vC

2

1

Ngày đăng: 25/01/2014, 12:20

TỪ KHÓA LIÊN QUAN