Under dc conditions, the circuit becomes that shown below: 4C 1eq... Because this is a totally capacitive circuit, we can combine all the capacitors using the property that capacitors in
Trang 12
1Cv2
1
1 (40)(80)2
480 mA
Chapter 6, Solution 4
)0(vidtC
1For 0 < t < 1, i = 4t,
1
v dt + 0 = 100t2 kV v(1) = 100 kV
Trang 21v
1t0,
kVt100
2 2
Chapter 6, Solution 6
6
10x
30
dt
dv
C
i= = − x slope of the waveform
For example, for 0 < t < 2,
3
10x2
10dt
10x10x
3 3
10x50
1)
t(vidtC
Trang 3(a) ACe t BCe t
AC
i(0)=2=−100 −600 → 5=− −6 (2)
B A v
.2410
41160010
461
s3t116,
s10
,16
µµ
µ
t t
v
Trang 4s10,1016
6
6
µµ
µ
t x
s3t10,
s10
,kA32)
(
µµ
µ
t t
i
Chapter 6, Solution 11
v = ∫t +
oidt v(0)C
3
10x
1
v(1) = 10 kV For 1 < t < 2,
kV10)1(vvdtC
3
6 ( 40x10 )dt v(2)10
x
1v
= -10t + 30kV Thus
2t1,
kV10
1t0,
kVt10
Chapter 6, Solution 12
π
−π
=
= x10− x60(4 )( sin4dt
dvC
o 21.6 sin8pdt
π
π88
6.cos
o = -5.4J
Trang 5Under dc conditions, the circuit becomes that shown below:
4C
1eq
Trang 6w20 = 2 = x20x10− 6x1002 =
2
1Cv
Cv
2 1
80
80
++
(b) Ceq = 5 + [6 || (4 + 2)] = 5 + (6 || 6) = 5 + 3 = 8F
(c) 3F in series with 6F = (3 x 6)/9 = 6F
13
16
12
1C
1eq
=++
Ceq = 1F
Trang 7For the capacitors in parallel = 15 + 5 + 40 = 60 µF
1 eqC
Hence
10
160
130
120
1C
1eq
=++
20
8
Trang 86µF in series with 6µF = 3µF 3µF in parallel with 2µF = 5µF 5µF in series with 5µF = 2.5µF Hence Ceq = 2.5µF
120
160
1C
1
1
eq
=++
eq
Thus
Ceq = 10 + 40 = 50 µF
Trang 9(a) 3µF is in series with 6µF 3x6/(9) = 2µF
1CC
Trang 10vs = v1 + v2 = 2
1
2 1 2 2 1
C
CCvvC
=
2 1
1
CC
C+
=v
2 1
2
CC
Cv
1C
QC
Q =
2
2 1 2 2 2
C
CCQQC
=+
or
Q2 =
2 1
2CC
C+
s 2 1
1
CC
CQ
1
CC
C+
=
2 1
2
CC
C+
=i
2 2
C1
= 393.8mJ
Trang 11(a)
20
720
110
15
1C
1C
1C
1C
1
3 2 1 eq
=++
=++
12
2 2
eqvC
40
130
130
110
140
110
1
403 + + =
Ca = 5µF
30210
1300
1400
Trang 121300
1400
75.23x
in series with C =
5
C3
2
C52
C3Cx
2C
C
1C2
1C2
1C
1eq
=+
=
Ceq = C
Trang 13vo = ∫t +
oidt i(0)C
1
For 0 < t < 1, i = 60t mA,
kVt100tdt6010
x
10
o 6
3
−
vo(1) = 10kV For 1< t < 2, i = 120 - 60t mA,
10
t + = [40t – 10t2]1 10kV
1t0,
kVt10)
3t1,
mA20
1t0,tmA20)t(
is
Ceq = 4 + 6 = 10µF
)0(vidtC
1
o eq
3
t2010
x10
10v
kV1t
Trang 14kV1t2
1t0,
kVt)t(v
2 2
dt
dv10xdt
dvC
1 1
3t1,
mA12
1t0,
tmA12
dt
dv10x4dt
dvC
2 1
3t1,
mA8
1t0,
tmA8
Chapter 6, Solution 32
(a) Ceq = (12x60)/72 = 10 µF
13001250
501250
)0(30
1012
0
0
2 1
2 6
e x
v
230250
20250
)0(30
1060
2 2
2 6
e x
v
(b) At t=0.5s,
03.138230
250,
15.8401300
w µF
J 1905.0)03.138(10202
w µF
J 381.0)03.138(10402
w
Trang 15Because this is a totally capacitive circuit, we can combine all the capacitors using the property that capacitors in parallel can be combined by just adding their values and we combine capacitors in series by adding their reciprocals
3F + 2F = 5F 1/5 +1/5 = 2/5 or 2.5F The voltage will divide equally across the two 5F capacitors Therefore, we get:
VTh = 7.5 V, CTh = 2.5 F
Chapter 6, Solution 34
i = 6e-t/2
2 /
2
1)6(10x10dt
6.0
10x60t/
VL
3
200 mH
Trang 16Chapter 6, Solution 36
V)t2sin)(
2)(
12(10x4
1dt
diL
diL
∫ =∫
Jt200cos200
6
9 11/200
o
−
= =−48(cosπ−1)mJ= 96 mJ
Chapter 6, Solution 38
(e 2te )dt10
x40dt
diL
v= = − 3 − 2 t − − 2 t
= 40(1−2t)e− 2 tmV t>0
Trang 171idt
diL
v= → = ∫0t +
1dt)4t2t3(10x200
1
i= −3∫0t 2 + + +
1)t4tt
40
-ms3t110t,
-20
ms10
ms3t1,10x10
-ms10
,10
200
ms3t1V,
200
-ms10
Trang 18t 2 t
2
1)0(ivdtL
1)0(ivdtL
Trang 19w = L Li ( )
2
1)t(Li2
1idt
2 t
10x80
t o
5
1tivdtL
1
= 0.25t2 kA For 1 < t < 2, v = -10 + 5t
1
3 ( 10 5t)dt i(1)10
x10
1i
1t0,
kAt25.0)
t
(
i
2 2
Trang 20= (3)
24
4
iL 2A, vc = 0V
L2
1
C2
10)
2R
R10Ri
vc L
+
=
=
Trang 212 6
2
c
c
)2R(
R100x10x80Cv
2
1
L
)2R(
100x10x2Li
2 6
)2R(
100x10x)2Rx(
R100x10
−
+
−
+ vC1
=+
=
=
64
30i
Trang 22160
Trang 23[5(8 12) 6(8 4)]
8106
L
L Lx L
L L L
5.02
5.025
.0//
++
=+
Trang 245L
L3
5LxL
3
2L
L
85
dt
di4vv
i = i1 + i2 i2 = i – i1 (3)
3
vdt
diordt
di3
and
0dt
di5dt
di2
di2
di7dt
di5dt
di5dt
di2
dt
di73
51
35dt
Trang 25vs = 1+ 2
2 1
sLL
vdt
dt
di
L2
2 =v
,vLL
L
2 1
1
2 1
2
LL
Lv
diLv
2
1 1 2
2 1
i = +
2 1
2 1 2
1
2 1 s
LL
LLvL
vL
vdt
didt
didt
=+
=+
LLL
1vdtL
1
2 1
2 1 1 1
2 1
LLL+
Trang 26=
dt
diLL
LLL
1vdtL
1
2 1
2 1 2 2
2 1
LL
L+
Chapter 6, Solution 60
8
155//
=
eq L
di L
2 2
0
A5.15.05
.12)
15(5
12)0()
s
2030
diL
diL
8.0
2
1 t t
Trang 27(a) 40mH
80
60202560//
eq
x i
dt t v L
i dt
3
3
)0()1(
1.0)0(12
1040
10)
0()(1
Using current division,
i i i
i
i
4
1,
.0)0(75.0)
-A )08667.01
,2
30
,2
2 1
1
t dt
di dt
,4
42
,0
20
,4
2
2
t t
t dt
di dt
di
L
v
Trang 28v1
v2
34/12)
A 93)]
()0([)()
(b) -12 + 4i(0) + v=0, i.e v=12 – 4i(0) = 36 V
(c) At steady state, the inductor becomes a short circuit so that v= 0 V
Trang 29(a) = 2 = 2 =
1 1
2
1iL2
1
= − 2 =
20 (20)( 2)2
dt
diL
v=
ovdt i(0)L
1i = 1 − ∫t12 dt + 0 mA
o
10x60
i 50(1 - cos 4t) mA
mH2440
mV)t4cos1)(
50(dt
d10x24dt
diL
= 4.8 sin 4t mV
Trang 30= - 5t + 30 mV
Trang 31Thus vo(t) is as shown below:
2 5
6
5
7 5
5 0
1
=C
1dtvCR
1dtvC
1 1
o
−+
For the given problem, C = 2µF,
R1C = 1 R1 = 1/(C) = 1006/(2) = 500 kΩ
R2C = 1/(4) R2 = 1/(4C) = 500kΩ/(4) = 125 kΩ
R3C = 1/(10) R3 = 1/(10C) = 50 kΩ
Trang 3210xx10x10
10x.010x20
−+
R
At node b,
dt
dvCR
vvR
Trang 33v2
Combining (1) and (2),
dt
dv2
RCv
v
o o
dv2.0dt
dvRC
3t1,V2
1t0,V2
2
Trang 34Chapter 6, Solution 75
,dt
dvRC
Chapter 6, Solution 76
,dt
5t0,10dt
−
=
−
110
Trang 35o i
Thus vi is obtained from vo as shown below:
–dvo(t)/dt
– vo(t) (V)
4 -4
4 -4
2
vdt
dv2t2sin
Trang 36Chapter 6, Solution 79
We can write the equation as
)(4)(t y t
− +
−+
− +
+
−
sin2t
−+
vo
R
Trang 37From the given circuit,
dt
dvk200
k1000v
k5000
k1000)
t(dt
v
o 2
o 2
Ω
Ω
−Ω
dv5dt
vd
o
o 2
o
2
=++
Chapter 6, Solution 81
We can write the equation as
)(25
2
2
t f v
Trang 39qI
150(36 20)
1t0,4i
1t0,L4dt
diLv
1t0,mV5v
1
CC
=++
11
For the parallel-connected strings,
=µ
C10C10
s
Trang 40(b) vT = 8 x 100V = 800V
2 T
2
1vC
2
1