1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Tài liệu Bài giải mạch P9 docx

46 262 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Solution to Chapter 9 in Bài Giải Mạch P9
Trường học Vietnam National University, Hanoi
Chuyên ngành Electrical Engineering
Thể loại bài giải
Định dạng
Số trang 46
Dung lượng 1,53 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

We obtain I by applying the principle of current division twice... First, we convert the circuit into the frequency domain... Since the left portion of the circuit is twice as large as t

Trang 1

(a) angular frequency ω = 10 3 rad/s

Trang 2

(a) v = 8 cos(7t + 15°) = 8 sin(7t + 15° + 90°) = 8 sin(7t + 105°)

(b) i = -10 sin(3t – 85°) = 10 cos(3t – 85° + 90°) = 10 cos(3t + 5°)

i(t) = 4 sin(4t + 50°) = 4 cos(4t + 50° – 90°) = 4 cos(4t – 40°)

Thus, i(t) leads v(t) by 20°

Thus, y(t) leads x(t) by 9.24°

Chapter 9, Solution 7

If f(φ) = cosφ + j sinφ,

)(j)sinj(cosjcosj-sin

d

df

φ

=φ+φ

=φ+φ

Trang 3

°

∠+ j2 =

°

°

∠53.13-5

4515

+ j2 = 3∠98.13° + j2 = -0.4245 + j2.97 + j2

= -0.4243 + j4.97

(b) (2 + j)(3 – j4) = 6 – j8 + j3 + 4 = 10 – j5 = 11.18∠-26.57°

j4)-j)(3(2

20-8+

°

+j125-

10

°

∠26.57-11.18

20-8

+

14425

)10)(

12j5-+

= 0.7156∠6.57° − 0.2958

− j0.71

= 0.7109 + j0.08188 − 0.2958 − j0.71

4j3

+ = 2 +

6425

)8j5)(

4j3(+

++

= 2 +

89

3220j24j

2j1 = 4∠-10° +

°

°

∠63

63.43-236.2

Trang 4

504809

20-6108

=

064.3j571.2863.8j5628.1

052.2j638.53892.1j879.7

−+

−+

+

=

799.5j0083.1

6629.0j517.13

81.2-533.13

4j3-

+ =

25144

)5j12)(

4j3(-

+

++

2 1

zz

zz

+

=

)j15(

)j1(9+

+

115

j)-15)(

j1(9-

= -0.6372 – j0.5575

Trang 5

+ =

25144

)5j12)(

4j3(-

+

++

2 1

zz

zz

+

=

)j15(

)j1(9+

+

115

j)-15)(

j1(9-

.246

9.694424186

)5983.1096.16)(

8467

(

)8060)(

8056.13882.231116

62

(

j j

j j

j j

+

=+

+

−+

+

(c) (−2+ j4)2 (260− j120) =−256.4− j200.89

Trang 6

(a)

j1-5-

3j26j10

+

−+

16

10-4-3020

0jj1

j1j1

j1j

0jj1

The phasor form is 5∠-100°

(c) 4 cos(2t) + 3 sin(2t) = 4 cos(2t) + 3 cos(2t – 90°)

The phasor form is 4∠0° + 3∠-90° = 4 – j3 = 5∠-36.87°

Chapter 9, Solution 17

(a) Let A = 8∠-30° + 6∠0°

= 12.928 – j4 = 13.533∠-17.19°

a(t) = 13.533 cos(5t + 342.81°)

Trang 7

= 3.881 + j42.33 = 42.51∠84.76°

b(t) = 42.51 cos(120πt + 84.76°)

(c) Let C = 4∠-90° + 3∠(-10° – 90°)

= -j4 – 0.5209 – j2.954 = 6.974∠265.72°

v2 = 10 cos(40t + 53.13°)

(c) i1(t) = 2.8 cos(377t – π/3)

(d) I2 = -0.5 – j1.2 = 1.3∠247.4°

)t(

i2 = 1.3 cos(10 3 t + 247.4°) Chapter 9, Solution 19

(a) 3∠10° − 5∠-30° = 2.954 + j0.5209 – 4.33 + j2.5

= -1.376 + j3.021 = 3.32∠114.49°

Therefore, 3 cos(20t + 10°) – 5 cos(20t – 30°) = 3.32 cos(20t +

114.49°)

(b) 4∠-90° + 3∠-45° = -j40 + 21.21 – j21.21

= 21.21 – j61.21

= 64.78∠-70.89°

Therefore, 40 sin(50t) + 30 cos(50t – 45°) = 64.78 cos(50t – 70.89°)

(c) Using sinα = cos(α − 90°),

20∠-90° + 10∠60° − 5∠-110° = -j20 + 5 + j8.66 + 1.7101 + j4.699

= 6.7101 – j6.641 = 9.44∠-44.7°

Therefore, 20 sin(400t) + 10 cos(400t + 60°) – 5 sin(400t – 20°)

= 9.44 cos(400t – 44.7°)

Trang 8

(a) V =4∠−60o −90o −5∠40o =−3.464− j2−3.83− j3.2139=8.966∠−4.399o

Hence,

)399.4377cos(

966

(b) I =10∠0o + jω8∠20o −90o, ω =5, i.e I =10+40∠20o =49.51∠16.04o

)04.165cos(

51

324.8)

(b) G=8∠−90o +4∠50o =2.571− j4.9358=5.565∠−62.49o

)49.62cos(

565.5)

i.e H =0.25∠−90o +0.125∠−180o =−j0.25−0.125=0.2795∠−116.6o

)6.11640cos(

2795.0)

v( ) 4 2 ( )

10

o V

j

V V j

V

F =10 + 4 − 2 , ω =5, =20∠−30

ωω

o j

j V

j V j

V

F =10 + 20 − 0.4 =(10− 19.6)(17.32− 10)=440.1∠−92.97

)97.925cos(

1.440)

Trang 9

(a) v(t) = 40 cos(ωt – 60°)

(b) V = -30∠10° + 50∠60°

= -4.54 + j38.09 = 38.36∠96.8°

010

j = ∠ ° ω=ω

+ V

V

10)j1( − =

V

°

=+

=

= 5 j5 7.071 45j

9010(20j

45

ω++

454j

V

°

=+

°

= 3.43 -110.96

3j5

80-20

V

Therefore, v(t) = 3.43 cos(4t – 110.96°)

Trang 10

(a)

2,

45-432jωI+ I= ∠ ° ω=

°

=+ j4) 4 -453

°

13.535

45-4j43

45-4ITherefore, i(t) = 0.8 cos(2t – 98.13°)

(b)

5,

2256jj

°

56.26708.6

2253

j6

225

I

Therefore, i(t) = 0.745 cos(5t – 4.56°)

Chapter 9, Solution 26

2,

01j2

ω++

ωI I I

12j

122

I

°

=+

= 0.4 -36.87

5.1j2

10-110j

10050

ω+

.380(

Trang 11

)t(v)

10(j

1C

j

1

6 -

×

65-60

Z

V I

Therefore, i(t) = 30 cos(500t – 155°) A

60-65

I

V Z

Since V and I are in phase, the element is a resistor with R = 6.5 Ω

Trang 12

V = 180∠10°, I = 12∠-30°, ω = 2

Ω+

0180

I

V

Z

One element is a resistor with R = 11.49 Ω

The other element is an inductor with ωL = 9.642 or L = 4.821 H

Chapter 9, Solution 33

2 L

vo =

LC

1C

1

ω

105(

V

2j)1)(

2(jL

2j-)25.0)(

2(j

1C

j

1

=

2

2j2j2j2

2j

Trang 13

Let Z be the input impedance at the source

2010

100200mH

100 → jωL= j x x − 3 = j

500200

1010

11

F

x x j C

→

ωµ

1000//-j500 = 200 –j400

1000//(j20 + 200 –j400) = 242.62 –j239.84

o j

Z =2242.62− 239.84=2255∠−6.104

mA896.361.26104.62255

1

5(j

1C

j

1

=

Let Z1 =-j,

5j2

10j5j2

)5j)(

2(5j

2

Z Z

Z I

=+

+

+

8j5

20j)2(5j2

10jj-

5j2

10jx

I

Therefore, ix(t)= 2.12 sin(5t + 32°) A

Trang 14

(a) -j2

)6/1)(

3(j

1C

j

1F

6

1

=

j4

2j-

I Hence, i(t) = 4.472 cos(3t – 18.43°) A

)12/1)(

4(j

1C

j

1F

12

1

=

→

12j)3)(

4(jLjH

050

Z

V I Hence, i(t) = 10 cos(4t + 36.87°) A

= (50 0 ) 41.6 33.69j12

8

12j

V Hence, v(t) = 41.6 cos(4t + 33.69°) V

Chapter 9, Solution 39

10j810j5j

)10j-)(

5j(8)10j-

||

5j

−+

=+

20j10

8

040

j

10j-

5j

I

Therefore, i1(t)= 6.248 cos(120πt – 51.34°) A

=)t(

i2 3.124 cos(120πt + 128.66°) A

Trang 15

(a) For ω=1,

j)1)(

1(jLjH

20j-)05.0)(

1(j

1C

j

1F

05

40j-j)20j-

||

2

−+

=+

04j0.802

1.98

04

V I

Hence, io(t)= 1.872 cos(t – 22.05°) A

(b) For ω=5,

5j)1)(

5(jLjH

4j-)05.0)(

5(j

1C

j

1F

05

4j-5j)4j-

||

25

−+

=+

04j4

1.6

04

V I

Hence, io(t)= 0.89 cos(5t – 69.14°) A

(c) For ω=10,

10j)1)(

10(jLjH

2j-)05.0)(

10(j

1C

j

1F

05

4j-10j)2j-

||

210

−+

=+

049

j1

04

V I

Hence, io(t)= 0.4417 cos(10t – 83.66°) A

Trang 16

,

j)1)(

1(jLjH

j-)1)(

1(j

1Cj

1F

1j-1)j-

||

)j1(

=

Z

j2

10s

j2

)10)(

j1()j1()j1)(

200(j

1C

j

1F

×

→

µ

20j)1.0)(

200(jLjH

1

20j40j2-1

j100-j10050

)(50)(-j100-j100

70

20j)060(20j403020j

20jo

V

Thus, vo(t)= 17.14 sin(200t + 90°) V

or vo(t)= 17.14 cos(200t) V

Trang 17

2j)1)(

2(jLjH

5.0j-)1)(

2(j

1Cj

1F

=+

5.1j1

5.1j15.0j2j

5.0j2j

200(jLjmH

j-)105)(

200(j

1C

j

1mF

×

→

4.0j55.010

j35.0j25.0j3

12j

14

1

=

++

=

−++

=

Y

865.0j1892.14.0j55.0

11

°

=+

°

=+

°

865.0j1892.6

065

06

Z I

Thus, i(t) = 0.96 cos(200t – 7.956°) A

Trang 18

We obtain I by applying the principle of current division twice o

2j-

1 =

j2-2

j4-j42

||

-j2)(4j

Z

j1

j10-)05(3j12j-

2j-

2 1

1

Z I

=+

10-j1

j10-j-1

j-j2

2

-j2-2

j-)1.0)(

10(j

1C

j

1F

1

10(jLjH

2

2j4

8j2j

j1.60.8

s 2 1

Z Z

Z I

)405)(

43.63789.1(o

I

Thus, io(t)= 2.325 cos(10t + 94.46°) A

Trang 19

First, we convert the circuit into the frequency domain

=++

+

−+

63.52854.10

5626

.8j588.42

54

j2010j

)4j20(10j2

We can solve this using nodal analysis

Trang 20

4338.0i

4.94338.020

j30

29.24643.15I

29.24643.1503462.0j12307.0

402V

402)01538.0j02307.005.0j1.0(V

020j3020j10

x x 1 1

°+

+

=

−++

Chapter 9, Solution 49

4j1

)j1)(

2j(2)j1(

||

2j2

+

−+

=

−+

I

j1

2jj12j

2j

105

x =0 ∠ °=

I

4j

j12

j

j1

j1T

Trang 21

Using the current dividing rule:

V)50t100cos(

50

v

5050I20

V

505.2405.2j40510j2010j

10jI

x

x x

2(j

1C

j

1F

1

2(jLjH

5

The current I through the 2-Ω resistor is

4j32j5j1

s = −+

I

Therefore,

=)t(

is 50 cos(2t – 53.13°) A

Chapter 9, Solution 52

5.2j5.2j1

5j5j5

25j5

Trang 22

s s

s 2 1

=

)5.2j5.2

5.2(j5

430

+

=+

)j5)(

308

46,

7692.01532.0210

42

2

j

x j Z j

j

x j

)2308.01538.9()10//(

)

8

163.0878.66062.0726.4

A 64.28721.83575.188.6

3060Z

3060

o

o o

Trang 23

Since the left portion of the circuit is twice as large as the right portion, the equivalent circuit is shown below

V s

V 1 +

V

)j1(4

V

)j1(62 1

s =V +V = −

V

=s

j

48j

o

I

j8j4

-)8j((-j0.5)j4

-)8j(1

I

5.0j8

j8

-j0.52

I

)8j(12j20

)8j(2

j-2

j812j20

Trang 24

1j2

3

j26-4

3 → jωL= j

30/

3015

30)15///(

j j

j x j j

)06681.02(033.0)

06681.02//(

j j

j

j Z

Chapter 9, Solution 57

2H

2 → jωL= j

j C

2.1j6.2j22j

)j2(2j1)j2//(

2j1

−+

−+

=

−+

=

S 1463.0j3171.0Z1

Trang 25

(a) -j2

)1010)(

50(jCjmF

×

→

5.0j)1010)(

50(jLjmH

)2j1(

||

15.0j

Z

2j2

2j15.0j

−+

=

Z

)j3(25.05.0j

50(jLjH

2

20j-)101)(

50(j

1C

j

1mF

×

→

For the parallel elements,

20j-

110j

120

11

p

++

=

Z

10j10

||

)2j1(6

Z

)4j2()2j1(

)4j2)(

2j1(6

+

−+

=

Z

5385.1j308.26

=

−+

+

=+

−++

=(25 j15) (20 j50)//(30 j10) 25 j15 26.097 j5.122 51.1 j9.878

Z

Trang 26

All of the impedances are in parallel

3j1

15j

12j1

1j1

11

Z

4.0j8.0)3.0j1.0()2.0j-)4.0j2.0()5.0j5.0(1

eq

=

−++

−++

1eq

Chapter 9, Solution 62

2mH → jωL= j(10×103)(2×10-3)= j20

100j-)101)(

1010(j

1C

j

1F

×

×

→

µ

50 Ω j20 Ω

+

+ − V +

01

=

V

)50)(

2()100j20j50)(

01(

V

80j15010080j50

in in

V

Trang 27

First, replace the wye composed of the 20-ohm, 10-ohm, and j15-ohm impedances with the corresponding delta

5.22j1020

450j200z

,333.13j3015

j

450j200

z

45j2010

300j150j200

z

3 2

−+

Z

821.3j70.21)16j10

(

z

938.8j721.833

.29j40

)16j10)(

333.13j30()16j10

(

z

1 T

3

2

Chapter 9, Solution 64

A7.104527.14767.1j3866.0Z

9030

I

5j192

j6

)8j6(10j4

=

Trang 28

||

)6j4(2

Z

2j7

)4j3)(

6j4(2

+

−+

10120T

1705

j60

)10j40)(

5j20()10j40(

||

)5j20(

9060T

I 2 j10 Ω

I I

I

j12

2j85j60

10j40

+

=+

+

=

I I

I

j12

j45j60

5j20

=+

=

2 1

ab -20I j10I

Trang 29

I I

V

145

j)(150)-12

(j12

150-ab

+

=+

=

)76.9725.4)(

24.175457.12(

10(j

1C

j

1F

5

×

→

µ

)80j60(

||

20j60

Z

60j60

)80j60)(

20j(60

−+

10(j

1C

j

1F

×

→

µ2060

||

)10j40(

||

2050j-

Z

10j60

)10j40)(

20(50j-

++

1

Z

Y 0.0197∠74.56° S = 5.24 + j18.99 mS

Trang 30

1j3

12j5

12j-

14

11

o

+

=+

=

Y

6.1j8.05

)2j1)(

4(2j1

Y

)6.0j8.0()333.0j()1(6.0j8.0

13

j-

11

11

o

+++

=

−++

Y

773.4j4378.05j

Y

97.22

773.4j4378.05.0773.4j4378.0

12

11

eq

−+

=+

+

=

Y

2078.0j5191.01

2078.0j5191.0eq

Trang 31

Make a delta-to-wye transformation as shown in the figure below

c b

9j75

j15

)10j15)(

10(15j1010j5

)15j10)(

10j-

+

=++

)15j10)(

5(

)10j-)(

5(

||

)2

||

)5.3j5.6(9j7

Z

5.4j5.13

)8j7)(

5.3j5.6(9j7

−+

Trang 32

We apply a wye-to-delta transformation

j4 Ω

Z eq -j2 Ω

2j22

j

4j2j2

Z

j12

2j2

Z

j2-2j-

2j2

Z

8.0j6.13j1

)j1)(

4j()j1(

||

4j

)j1)(

1()j1(

=

Z

6.0j2.2

12

j2-

12j-

11

Trang 33

Transform the delta connections to wye connections as shown below

j2 Ω

j2 Ω j2 Ω

b

6j-18j-

102020

)20)(

20(

50

)10)(

20(

50

)10)(

20(3R

44)j6(j2

||

)82j(j2

Z

j4)(4

||

)2j8(j24

Z

j2-12

)4jj2)(4(8

j24ab

−+

++

=

Z

4054.1j567.3j24

Trang 34

Transform the delta connection to a wye connection as in Fig (a) and then

transform the wye connection to a delta connection as in Fig (b)

j2 Ω

j2 Ω j2 Ω

b

8.4j-10j

486j8j8j

)6j-)(

8j(

−+

64-10j

)8j)(

8j(

Z

=+

++

+++ )(4 ) (4 )( ) (2 )( )

2

6.9j4.46)4.6j)(

8.4j2()4.6j)(

8.4j4()8.4j4)(

8.4j2

25.7j5.14

.6j

6.9j4.46

Z

688.6j574.38.4j4

6.9j4.46

6.9j4.46

.12j574.3

)88.61583.7)(

906(

j7.25)-j4)(1.5

Trang 35

||

12j

||

4j-

||

)

||

6j

)5673.2j7494.0(

||

)3716.3j7407.0(

20j20-40

j20

)20j20)(

20j()20j20(

+

=+

=

Z

)j1(3

13j6

3j1)01(12j24

12j4

+

=+

Z

Z V

=+

3

j)j1(3

1j1

j20

j20

20j

)tcos(ω = ω + °

This is achieved by the RL circuit shown below, as explained in the previous problem

Trang 36

1X

π

=

394.9566116R

|Z

|XX

1fX

V V

=

)1020)(

102)(

2(

1C

1

×

×π

=

))53.979(tan-90(979.35

979.3j3.979

5

-j3.979

2 2

)51.38-90(83.1525

979.3i

+

=

V V

Therefore, the phase shift is 51.49° lagging

Trang 37

1f

2π =

=

×π

=

)1020)(

5)(

2(

1RC

)]

6(8[)6(8

−++

−+

=

−+

=

X j R

X j R X j R

Z

i.e 8R + j6R – jXR = 5R + 40 + j30 –j5X

Equating real and imaginary parts:

8R = 5R + 40 which leads to R=13.33Ω 6R-XR =30-5 which leads to X=4.125Ω

Trang 38

j30

)60j30)(

30j()60j30(

||

30j

+

+

=+

=+

+

=+

31j43

)21j43)(

10j()40(

)01)(

21.80028.9(

Z

Z V

+

=+

=

03.2685.47

)77.573875.0)(

87.81213.21(21j43

21j3

1

5

22

j1

2j60

j30

60j

V V

V

+

=+

=

)6.1131718.0)(

56.268944.0(

V Therefore, the phase shift is 140.2°

(b) The phase shift is leading

→

 j L j(2 )(60)(200 10 ) j75.4mH

)0120(4.75j50R

4.75j4

.75j50R

4.75j

i

++

=+

=

69.2688.167

)0120)(

904.75()0120(4.75j150

4.75jo

V

=o

V 53.89∠63.31° V

Trang 39

45.5647.90)

0120(4.75j50o

V

=o

V 100∠33.55° V

(c) To produce a phase shift of 45°, the phase of Vo = 90° + 0° − α = 45°

Hence, α = phase of (R + 50 + j75.4) = 45°

For α to be 45°, R + 50 = 75.4 Therefore, R = 25.4 Ω

Chapter 9, Solution 81

Let Z1 =R1,

2 2

1R

ω+

=

x x

1R

ω+

=

2 1

+

2

2 1

3 x

1R

R

RCj

1R

R

RCC

1R

RC

2 3

1 x 2

1

3 x

R

R

s 2

R

R

s 1 2

Trang 40

Let

s 1

1

||

=

Z , Z2 =R2, Z3 =R3, and Zx =Rx + jωLx

1CRjRC

j

1R

CjR

s 1 1

s 1

s 1

ω+

RRR

1CRjRRLj

1

3 2 1

s 1 3 2 x

Equating the real and imaginary components,

1

3 2

R R

R =

)CR(R

RR

1

3 2

s 3 2

L =Given that R1 =40kΩ, R2 =1.6kΩ, R3 = k4 Ω, and Cs =0.45µF

=Ω

=Ω

=

40

)4)(

6.1(R

RRR

1

3 2

1R

ω+

=

4 4

1

||

=

jCR

Rj-1CRj

R

4 4

4 4

Trang 41

3 2 3 2

4

2 4 2

4 4 1 4

C

jRRR1

CR

)jCR(RRj-

ω

=+

ω

Equating the real and imaginary components,

3 2 2

4

2 4 2 4

1CR

RR

=+

(1)

2

3 2

4

2 4 2

4

2 4 1

C

R1CR

CRR

ω

=+ω

ω

(2) Dividing (1) by (2),

2 2 4

4

CRC

R

1

ω

4 4 2 2

2

CRCR

1

4 4 2

2C R CR

1f

2π =

4 2 4

2 R C C R

2

1 f

π

=

Chapter 9, Solution 86

84j-

195j

1240

1

++

=

Y

0119.0j01053.0j101667

=

=

2.183861.4

100037

.1j1667.4

10001

Y

Z

Z = 228∠-18.2° Ω

Trang 42

102)(

2(

j-50

Cj

Z

)1010)(

102)(

2(j80Lj

Z

66.125j80

111

1

Z Z Z

66.125j80

179

.39j50

1100

11

+

+

−+

=

Z

)663.5j605.3745.9j24.1210(10

1 -3

−+

++

1C

Lf2L

would cause the capacitive impedance to double, while ω = π would cause the inductive impedance to halve Thus,

40j12015j40j

=

Z

Z = 120 – j65 Ω

Trang 43

Cj

1R

||

Ljin

−ω+

ω

+

=ω+ω+

=

C

1LjR

RLjCL

Cj

1LjR

Cj

1RLjin

Z

2 2

in

C

1LR

C

1LjRRLjCL

−ω+

−ω

=

Z

To have a resistive impedance, Im(Zin)=0 Hence,

0C

1LC

LR

−ω

C

1LC

R2

ω

−ω

1LCC

2 2 2

ω

=

(1) Ignoring the +1 in the numerator in (1),

0145jX

R80

s

++

°

=++

I

Trang 44

80

V

jXR80

)145)(

80(50

++

jXR80

)0145)(

jXR()jXR(

°

∠+

=+

V

jXR80

)145)(

jXR(110

++

+

From (1) and (2),

jXR

80110

5

11)80(jXR

30976X

From (1),

23250

)145)(

80(jXR

53824X

RR160

6400+ + 2 + 2 =

47424X

RR

Trang 45

||

RCj

LRjC

j-

ω+ω

=

Z

2 2 2

2 2

2

LR

LRjRLC

j-

ω+

ω+ω

=

To have a resistive impedance, Im(Zin)=0

Hence,

0LR

LRC

1-

2 2 2

2

=ω+

ω+ω

2 2 2

2

LR

LRC

1

ω+

ω

2 2

2 2 2

LR

LR

ω+

=

where ω=2πf =2π×107

)109)(

1020)(

104

(

)10400)(

104

(109

12 14

2 4

×

×

×π

×

×π+

×

nF72

169

2

π

π+

x Y

Z

1048450

75100

6

(b) γ = ZY = 100∠75o x450∠48o x10− 6 =0.2121∠61.5o

Trang 46

Z

20j

0115

Ngày đăng: 25/01/2014, 12:20

TỪ KHÓA LIÊN QUAN