We obtain I by applying the principle of current division twice... First, we convert the circuit into the frequency domain... Since the left portion of the circuit is twice as large as t
Trang 1(a) angular frequency ω = 10 3 rad/s
Trang 2(a) v = 8 cos(7t + 15°) = 8 sin(7t + 15° + 90°) = 8 sin(7t + 105°)
(b) i = -10 sin(3t – 85°) = 10 cos(3t – 85° + 90°) = 10 cos(3t + 5°)
i(t) = 4 sin(4t + 50°) = 4 cos(4t + 50° – 90°) = 4 cos(4t – 40°)
Thus, i(t) leads v(t) by 20°
Thus, y(t) leads x(t) by 9.24°
Chapter 9, Solution 7
If f(φ) = cosφ + j sinφ,
)(j)sinj(cosjcosj-sin
d
df
φ
=φ+φ
=φ+φ
Trang 3−
°
∠+ j2 =
°
∠
°
∠53.13-5
4515
+ j2 = 3∠98.13° + j2 = -0.4245 + j2.97 + j2
= -0.4243 + j4.97
(b) (2 + j)(3 – j4) = 6 – j8 + j3 + 4 = 10 – j5 = 11.18∠-26.57°
j4)-j)(3(2
20-8+
°
∠
+j125-
10
°
∠26.57-11.18
20-8
+
14425
)10)(
12j5-+
−
= 0.7156∠6.57° − 0.2958
− j0.71
= 0.7109 + j0.08188 − 0.2958 − j0.71
4j3
−
+ = 2 +
6425
)8j5)(
4j3(+
++
= 2 +
89
3220j24j
2j1 = 4∠-10° +
°
∠
°
∠63
63.43-236.2
Trang 4∠
504809
20-6108
=
064.3j571.2863.8j5628.1
052.2j638.53892.1j879.7
−
−+
−+
+
=
799.5j0083.1
6629.0j517.13
81.2-533.13
4j3-
−
+ =
25144
)5j12)(
4j3(-
+
++
2 1
zz
zz
−
+
=
)j15(
)j1(9+
+
115
j)-15)(
j1(9-
= -0.6372 – j0.5575
Trang 5−
+ =
25144
)5j12)(
4j3(-
+
++
2 1
zz
zz
−
+
=
)j15(
)j1(9+
+
115
j)-15)(
j1(9-
.246
9.694424186
)5983.1096.16)(
8467
(
)8060)(
8056.13882.231116
62
(
j j
j j
j j
+
−
=+
+
−
−+
+
(c) (−2+ j4)2 (260− j120) =−256.4− j200.89
Trang 6(a)
j1-5-
3j26j10
+
−+
16
10-4-3020
0jj1
j1j1
j1j
0jj1
The phasor form is 5∠-100°
(c) 4 cos(2t) + 3 sin(2t) = 4 cos(2t) + 3 cos(2t – 90°)
The phasor form is 4∠0° + 3∠-90° = 4 – j3 = 5∠-36.87°
Chapter 9, Solution 17
(a) Let A = 8∠-30° + 6∠0°
= 12.928 – j4 = 13.533∠-17.19°
a(t) = 13.533 cos(5t + 342.81°)
Trang 7= 3.881 + j42.33 = 42.51∠84.76°
b(t) = 42.51 cos(120πt + 84.76°)
(c) Let C = 4∠-90° + 3∠(-10° – 90°)
= -j4 – 0.5209 – j2.954 = 6.974∠265.72°
v2 = 10 cos(40t + 53.13°)
(c) i1(t) = 2.8 cos(377t – π/3)
(d) I2 = -0.5 – j1.2 = 1.3∠247.4°
)t(
i2 = 1.3 cos(10 3 t + 247.4°) Chapter 9, Solution 19
(a) 3∠10° − 5∠-30° = 2.954 + j0.5209 – 4.33 + j2.5
= -1.376 + j3.021 = 3.32∠114.49°
Therefore, 3 cos(20t + 10°) – 5 cos(20t – 30°) = 3.32 cos(20t +
114.49°)
(b) 4∠-90° + 3∠-45° = -j40 + 21.21 – j21.21
= 21.21 – j61.21
= 64.78∠-70.89°
Therefore, 40 sin(50t) + 30 cos(50t – 45°) = 64.78 cos(50t – 70.89°)
(c) Using sinα = cos(α − 90°),
20∠-90° + 10∠60° − 5∠-110° = -j20 + 5 + j8.66 + 1.7101 + j4.699
= 6.7101 – j6.641 = 9.44∠-44.7°
Therefore, 20 sin(400t) + 10 cos(400t + 60°) – 5 sin(400t – 20°)
= 9.44 cos(400t – 44.7°)
Trang 8(a) V =4∠−60o −90o −5∠40o =−3.464− j2−3.83− j3.2139=8.966∠−4.399o
Hence,
)399.4377cos(
966
(b) I =10∠0o + jω8∠20o −90o, ω =5, i.e I =10+40∠20o =49.51∠16.04o
)04.165cos(
51
324.8)
(b) G=8∠−90o +4∠50o =2.571− j4.9358=5.565∠−62.49o
)49.62cos(
565.5)
i.e H =0.25∠−90o +0.125∠−180o =−j0.25−0.125=0.2795∠−116.6o
)6.11640cos(
2795.0)
v( ) 4 2 ( )
10
o V
j
V V j
V
F =10 + 4 − 2 , ω =5, =20∠−30
ωω
o j
j V
j V j
V
F =10 + 20 − 0.4 =(10− 19.6)(17.32− 10)=440.1∠−92.97
)97.925cos(
1.440)
Trang 9(a) v(t) = 40 cos(ωt – 60°)
(b) V = -30∠10° + 50∠60°
= -4.54 + j38.09 = 38.36∠96.8°
010
j = ∠ ° ω=ω
+ V
V
10)j1( − =
V
°
∠
=+
=
−
= 5 j5 7.071 45j
9010(20j
45
ω++
454j
V
°
∠
=+
°
∠
= 3.43 -110.96
3j5
80-20
V
Therefore, v(t) = 3.43 cos(4t – 110.96°)
Trang 10(a)
2,
45-432jωI+ I= ∠ ° ω=
°
∠
=+ j4) 4 -453
°
∠
13.535
45-4j43
45-4ITherefore, i(t) = 0.8 cos(2t – 98.13°)
(b)
5,
2256jj
°
∠
56.26708.6
2253
j6
225
I
Therefore, i(t) = 0.745 cos(5t – 4.56°)
Chapter 9, Solution 26
2,
01j2
ω++
ωI I I
12j
122
I
°
∠
=+
= 0.4 -36.87
5.1j2
10-110j
10050
ω+
.380(
Trang 11)t(v)
10(j
1C
j
1
6 -
×
=ω
65-60
Z
V I
Therefore, i(t) = 30 cos(500t – 155°) A
60-65
I
V Z
Since V and I are in phase, the element is a resistor with R = 6.5 Ω
Trang 12V = 180∠10°, I = 12∠-30°, ω = 2
Ω+
0180
I
V
Z
One element is a resistor with R = 11.49 Ω
The other element is an inductor with ωL = 9.642 or L = 4.821 H
Chapter 9, Solution 33
2 L
vo =
LC
1C
1
ω
=ω
105(
V
2j)1)(
2(jL
2j-)25.0)(
2(j
1C
j
1
=
=ω
−
2
2j2j2j2
2j
Trang 13Let Z be the input impedance at the source
2010
100200mH
100 → jωL= j x x − 3 = j
500200
1010
11
F
x x j C
→
ωµ
1000//-j500 = 200 –j400
1000//(j20 + 200 –j400) = 242.62 –j239.84
o j
Z =2242.62− 239.84=2255∠−6.104
mA896.361.26104.62255
1
5(j
1C
j
1
=
=ω
Let Z1 =-j,
5j2
10j5j2
)5j)(
2(5j
2
Z Z
Z I
=+
+
+
8j5
20j)2(5j2
10jj-
5j2
10jx
I
Therefore, ix(t)= 2.12 sin(5t + 32°) A
Trang 14(a) -j2
)6/1)(
3(j
1C
j
1F
6
1
=
=ω
j4
2j-
I Hence, i(t) = 4.472 cos(3t – 18.43°) A
)12/1)(
4(j
1C
j
1F
12
1
=
=ω
→
12j)3)(
4(jLjH
050
Z
V I Hence, i(t) = 10 cos(4t + 36.87°) A
= (50 0 ) 41.6 33.69j12
8
12j
V Hence, v(t) = 41.6 cos(4t + 33.69°) V
Chapter 9, Solution 39
10j810j5j
)10j-)(
5j(8)10j-
||
5j
−+
=+
20j10
8
040
j
10j-
5j
I
Therefore, i1(t)= 6.248 cos(120πt – 51.34°) A
=)t(
i2 3.124 cos(120πt + 128.66°) A
Trang 15(a) For ω=1,
j)1)(
1(jLjH
20j-)05.0)(
1(j
1C
j
1F
05
40j-j)20j-
||
2
−+
=+
04j0.802
1.98
04
V I
Hence, io(t)= 1.872 cos(t – 22.05°) A
(b) For ω=5,
5j)1)(
5(jLjH
4j-)05.0)(
5(j
1C
j
1F
05
4j-5j)4j-
||
25
−+
=+
04j4
1.6
04
V I
Hence, io(t)= 0.89 cos(5t – 69.14°) A
(c) For ω=10,
10j)1)(
10(jLjH
2j-)05.0)(
10(j
1C
j
1F
05
4j-10j)2j-
||
210
−+
=+
049
j1
04
V I
Hence, io(t)= 0.4417 cos(10t – 83.66°) A
Trang 16,
=ω
j)1)(
1(jLjH
j-)1)(
1(j
1Cj
1F
1j-1)j-
||
)j1(
=
Z
j2
10s
j2
)10)(
j1()j1()j1)(
200(j
1C
j
1F
×
=ω
→
µ
20j)1.0)(
200(jLjH
1
20j40j2-1
j100-j10050
)(50)(-j100-j100
70
20j)060(20j403020j
20jo
V
Thus, vo(t)= 17.14 sin(200t + 90°) V
or vo(t)= 17.14 cos(200t) V
Trang 172j)1)(
2(jLjH
5.0j-)1)(
2(j
1Cj
1F
=+
−
−
5.1j1
5.1j15.0j2j
5.0j2j
200(jLjmH
j-)105)(
200(j
1C
j
1mF
×
=ω
→
4.0j55.010
j35.0j25.0j3
12j
14
1
−
=
++
−
=
−++
=
Y
865.0j1892.14.0j55.0
11
°
∠
=+
°
∠
=+
°
∠
865.0j1892.6
065
06
Z I
Thus, i(t) = 0.96 cos(200t – 7.956°) A
Trang 18We obtain I by applying the principle of current division twice o
2j-
1 =
j2-2
j4-j42
||
-j2)(4j
Z
j1
j10-)05(3j12j-
2j-
2 1
1
Z I
=+
10-j1
j10-j-1
j-j2
2
-j2-2
j-)1.0)(
10(j
1C
j
1F
1
10(jLjH
2
2j4
8j2j
j1.60.8
s 2 1
Z Z
Z I
)405)(
43.63789.1(o
I
Thus, io(t)= 2.325 cos(10t + 94.46°) A
Trang 19First, we convert the circuit into the frequency domain
=++
−
+
−+
63.52854.10
5626
.8j588.42
54
j2010j
)4j20(10j2
We can solve this using nodal analysis
Trang 204338.0i
4.94338.020
j30
29.24643.15I
29.24643.1503462.0j12307.0
402V
402)01538.0j02307.005.0j1.0(V
020j3020j10
x x 1 1
°+
+
−
=
−++
Chapter 9, Solution 49
4j1
)j1)(
2j(2)j1(
||
2j2
+
−+
=
−+
I
j1
2jj12j
2j
105
x =0 ∠ °=
I
4j
j12
j
j1
j1T
Trang 21Using the current dividing rule:
V)50t100cos(
50
v
5050I20
V
505.2405.2j40510j2010j
10jI
x
x x
2(j
1C
j
1F
1
2(jLjH
5
The current I through the 2-Ω resistor is
4j32j5j1
s = −+
I
Therefore,
=)t(
is 50 cos(2t – 53.13°) A
Chapter 9, Solution 52
5.2j5.2j1
5j5j5
25j5
Trang 22s s
s 2 1
=
)5.2j5.2
5.2(j5
430
−
+
=+
)j5)(
308
46,
7692.01532.0210
42
2
j
x j Z j
j
x j
)2308.01538.9()10//(
)
8
163.0878.66062.0726.4
A 64.28721.83575.188.6
3060Z
3060
o
o o
Trang 23Since the left portion of the circuit is twice as large as the right portion, the equivalent circuit is shown below
V s
−
V 1 +
V
)j1(4
V
)j1(62 1
s =V +V = −
V
=s
j
48j
o
I
j8j4
-)8j((-j0.5)j4
-)8j(1
I
5.0j8
j8
-j0.52
I
)8j(12j20
)8j(2
j-2
j812j20
Trang 241j2
3
j26-4
3 → jωL= j
30/
3015
30)15///(
j j
j x j j
)06681.02(033.0)
06681.02//(
j j
j
j Z
Chapter 9, Solution 57
2H
2 → jωL= j
j C
2.1j6.2j22j
)j2(2j1)j2//(
2j1
−+
−+
=
−+
=
S 1463.0j3171.0Z1
Trang 25(a) -j2
)1010)(
50(jCjmF
×
=ω
→
5.0j)1010)(
50(jLjmH
)2j1(
||
15.0j
Z
2j2
2j15.0j
−+
=
Z
)j3(25.05.0j
50(jLjH
2
20j-)101)(
50(j
1C
j
1mF
×
=ω
→
For the parallel elements,
20j-
110j
120
11
p
++
=
Z
10j10
||
)2j1(6
Z
)4j2()2j1(
)4j2)(
2j1(6
+
−+
=
Z
5385.1j308.26
=
−+
+
=+
−++
=(25 j15) (20 j50)//(30 j10) 25 j15 26.097 j5.122 51.1 j9.878
Z
Trang 26All of the impedances are in parallel
3j1
15j
12j1
1j1
11
Z
4.0j8.0)3.0j1.0()2.0j-)4.0j2.0()5.0j5.0(1
eq
−
=
−++
−++
1eq
Chapter 9, Solution 62
2mH → jωL= j(10×103)(2×10-3)= j20
100j-)101)(
1010(j
1C
j
1F
×
×
=ω
→
µ
50 Ω j20 Ω
+
+ − V +
01
=
V
)50)(
2()100j20j50)(
01(
V
80j15010080j50
in in
V
Trang 27First, replace the wye composed of the 20-ohm, 10-ohm, and j15-ohm impedances with the corresponding delta
5.22j1020
450j200z
,333.13j3015
j
450j200
z
45j2010
300j150j200
z
3 2
−+
Z
821.3j70.21)16j10
(
z
938.8j721.833
.29j40
)16j10)(
333.13j30()16j10
(
z
1 T
3
2
Chapter 9, Solution 64
A7.104527.14767.1j3866.0Z
9030
I
5j192
j6
)8j6(10j4
=
Trang 28||
)6j4(2
Z
2j7
)4j3)(
6j4(2
+
−+
10120T
1705
j60
)10j40)(
5j20()10j40(
||
)5j20(
9060T
I 2 j10 Ω
I I
I
j12
2j85j60
10j40
+
=+
+
=
I I
I
j12
j45j60
5j20
−
=+
−
=
2 1
ab -20I j10I
Trang 29I I
V
145
j)(150)-12
(j12
150-ab
+
=+
=
)76.9725.4)(
24.175457.12(
10(j
1C
j
1F
5
×
=ω
→
µ
)80j60(
||
20j60
Z
60j60
)80j60)(
20j(60
−+
10(j
1C
j
1F
×
=ω
→
µ2060
||
)10j40(
||
2050j-
Z
10j60
)10j40)(
20(50j-
++
1
Z
Y 0.0197∠74.56° S = 5.24 + j18.99 mS
Trang 301j3
12j5
12j-
14
11
o
+
=+
=
Y
6.1j8.05
)2j1)(
4(2j1
Y
)6.0j8.0()333.0j()1(6.0j8.0
13
j-
11
11
o
+++
=
−++
Y
773.4j4378.05j
Y
97.22
773.4j4378.05.0773.4j4378.0
12
11
eq
−+
=+
+
=
Y
2078.0j5191.01
2078.0j5191.0eq
Trang 31Make a delta-to-wye transformation as shown in the figure below
c b
9j75
j15
)10j15)(
10(15j1010j5
)15j10)(
10j-
+
−
=++
)15j10)(
5(
)10j-)(
5(
||
)2
||
)5.3j5.6(9j7
Z
5.4j5.13
)8j7)(
5.3j5.6(9j7
−+
Trang 32We apply a wye-to-delta transformation
j4 Ω
Z eq -j2 Ω
2j22
j
4j2j2
Z
j12
2j2
Z
j2-2j-
2j2
Z
8.0j6.13j1
)j1)(
4j()j1(
||
4j
)j1)(
1()j1(
=
Z
6.0j2.2
12
j2-
12j-
11
Trang 33Transform the delta connections to wye connections as shown below
j2 Ω
j2 Ω j2 Ω
b
6j-18j-
102020
)20)(
20(
50
)10)(
20(
50
)10)(
20(3R
44)j6(j2
||
)82j(j2
Z
j4)(4
||
)2j8(j24
Z
j2-12
)4jj2)(4(8
j24ab
−+
++
=
Z
4054.1j567.3j24
Trang 34Transform the delta connection to a wye connection as in Fig (a) and then
transform the wye connection to a delta connection as in Fig (b)
j2 Ω
j2 Ω j2 Ω
b
8.4j-10j
486j8j8j
)6j-)(
8j(
−+
64-10j
)8j)(
8j(
Z
=+
++
+++ )(4 ) (4 )( ) (2 )( )
2
6.9j4.46)4.6j)(
8.4j2()4.6j)(
8.4j4()8.4j4)(
8.4j2
25.7j5.14
.6j
6.9j4.46
Z
688.6j574.38.4j4
6.9j4.46
6.9j4.46
.12j574.3
)88.61583.7)(
906(
j7.25)-j4)(1.5
Trang 35||
12j
||
4j-
||
)
||
6j
)5673.2j7494.0(
||
)3716.3j7407.0(
20j20-40
j20
)20j20)(
20j()20j20(
+
=+
=
Z
)j1(3
13j6
3j1)01(12j24
12j4
+
=+
Z
Z V
=+
3
j)j1(3
1j1
j20
j20
20j
)tcos(ω = ω + °
This is achieved by the RL circuit shown below, as explained in the previous problem
Trang 361X
π
=ω
=
394.9566116R
|Z
|XX
1fX
V V
−
=
)1020)(
102)(
2(
1C
1
×
×π
=ω
=
))53.979(tan-90(979.35
979.3j3.979
5
-j3.979
2 2
)51.38-90(83.1525
979.3i
+
=
V V
Therefore, the phase shift is 51.49° lagging
Trang 371f
2π =
=ω
=
×π
=π
=
)1020)(
5)(
2(
1RC
)]
6(8[)6(8
−++
−+
=
−+
=
X j R
X j R X j R
Z
i.e 8R + j6R – jXR = 5R + 40 + j30 –j5X
Equating real and imaginary parts:
8R = 5R + 40 which leads to R=13.33Ω 6R-XR =30-5 which leads to X=4.125Ω
Trang 38j30
)60j30)(
30j()60j30(
||
30j
+
+
=+
=+
+
=+
31j43
)21j43)(
10j()40(
)01)(
21.80028.9(
Z
Z V
+
=+
=
03.2685.47
)77.573875.0)(
87.81213.21(21j43
21j3
1
5
22
j1
2j60
j30
60j
V V
V
+
=+
=
)6.1131718.0)(
56.268944.0(
V Therefore, the phase shift is 140.2°
(b) The phase shift is leading
=ω
→
j L j(2 )(60)(200 10 ) j75.4mH
)0120(4.75j50R
4.75j4
.75j50R
4.75j
i
++
=+
=
69.2688.167
)0120)(
904.75()0120(4.75j150
4.75jo
V
=o
V 53.89∠63.31° V
Trang 3945.5647.90)
0120(4.75j50o
V
=o
V 100∠33.55° V
(c) To produce a phase shift of 45°, the phase of Vo = 90° + 0° − α = 45°
Hence, α = phase of (R + 50 + j75.4) = 45°
For α to be 45°, R + 50 = 75.4 Therefore, R = 25.4 Ω
Chapter 9, Solution 81
Let Z1 =R1,
2 2
1R
ω+
=
x x
1R
ω+
=
2 1
=ω
+
2
2 1
3 x
1R
R
RCj
1R
R
RCC
1R
RC
2 3
1 x 2
1
3 x
R
R
s 2
R
R
s 1 2
Trang 40Let
s 1
1
||
Rω
=
Z , Z2 =R2, Z3 =R3, and Zx =Rx + jωLx
1CRjRC
j
1R
CjR
s 1 1
s 1
s 1
ω+
RRR
1CRjRRLj
1
3 2 1
s 1 3 2 x
Equating the real and imaginary components,
1
3 2
R R
R =
)CR(R
RR
1
3 2
s 3 2
L =Given that R1 =40kΩ, R2 =1.6kΩ, R3 = k4 Ω, and Cs =0.45µF
=Ω
=Ω
=
40
)4)(
6.1(R
RRR
1
3 2
1R
ω+
=
4 4
1
||
Rω
=
jCR
Rj-1CRj
R
4 4
4 4
Trang 413 2 3 2
4
2 4 2
4 4 1 4
C
jRRR1
CR
)jCR(RRj-
ω
−
=+
ω
+ω
Equating the real and imaginary components,
3 2 2
4
2 4 2 4
1CR
RR
=+
(1)
2
3 2
4
2 4 2
4
2 4 1
C
R1CR
CRR
ω
=+ω
ω
(2) Dividing (1) by (2),
2 2 4
4
CRC
R
1
ω
=ω
4 4 2 2
2
CRCR
1
=ω
4 4 2
2C R CR
1f
2π =
=ω
4 2 4
2 R C C R
2
1 f
π
=
Chapter 9, Solution 86
84j-
195j
1240
1
++
=
Y
0119.0j01053.0j101667
=
=
2.183861.4
100037
.1j1667.4
10001
Y
Z
Z = 228∠-18.2° Ω
Trang 42102)(
2(
j-50
Cj
Z
)1010)(
102)(
2(j80Lj
Z
66.125j80
111
1
Z Z Z
66.125j80
179
.39j50
1100
11
+
+
−+
=
Z
)663.5j605.3745.9j24.1210(10
1 -3
−+
++
1C
1π
=ω
Lf2L
would cause the capacitive impedance to double, while ω = π would cause the inductive impedance to halve Thus,
40j12015j40j
=
Z
Z = 120 – j65 Ω
Trang 43Cj
1R
||
Ljin
−ω+
ω
+
=ω+ω+
=
C
1LjR
RLjCL
Cj
1LjR
Cj
1RLjin
Z
2 2
in
C
1LR
C
1LjRRLjCL
−ω+
−ω
=
Z
To have a resistive impedance, Im(Zin)=0 Hence,
0C
1LC
LR
−ω
C
1LC
R2
ω
−ω
=ω
1LCC
2 2 2
ω
+ω
=
(1) Ignoring the +1 in the numerator in (1),
0145jX
R80
s
++
°
∠
=++
I
Trang 4480
V
jXR80
)145)(
80(50
++
jXR80
)0145)(
jXR()jXR(
°
∠+
=+
V
jXR80
)145)(
jXR(110
++
+
From (1) and (2),
jXR
80110
5
11)80(jXR
30976X
From (1),
23250
)145)(
80(jXR
53824X
RR160
6400+ + 2 + 2 =
47424X
RR
Trang 45||
RCj
LRjC
j-
ω+ω
=
Z
2 2 2
2 2
2
LR
LRjRLC
j-
ω+
ω+ω
+ω
=
To have a resistive impedance, Im(Zin)=0
Hence,
0LR
LRC
1-
2 2 2
2
=ω+
ω+ω
2 2 2
2
LR
LRC
1
ω+
ω
=ω
2 2
2 2 2
LR
LR
Cω
ω+
=
where ω=2πf =2π×107
)109)(
1020)(
104
(
)10400)(
104
(109
12 14
2 4
×
×
×π
×
×π+
×
nF72
169
2
π
π+
x Y
Z
1048450
75100
6
(b) γ = ZY = 100∠75o x450∠48o x10− 6 =0.2121∠61.5o
Trang 46Z
20j
0115