1. Trang chủ
  2. » Công Nghệ Thông Tin

18 introduction matlab LinsysCalc ODE invanova

30 98 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Introduction to matlab: calculus, linear algebra, differential equations
Tác giả Violeta Ivanova
Trường học Massachusetts Institute of Technology
Chuyên ngành Engineering
Thể loại bài báo
Năm xuất bản 2007
Thành phố Cambridge
Định dạng
Số trang 30
Dung lượng 706,68 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

MATLAB Toolboxes & Help+ Mathematics + Matrices and Linear Algebra + Solving Linear Systems of Equations + Inverses and Determinants Eigenvalues + Polynomials and Interpolation + Convol

Trang 1

Introduction to MATLAB

Violeta Ivanova, Ph.D.

Office for Educational Innovation & Technology

violeta@mit.edu http://web.mit.edu/violeta/www

Trang 2

Topics

Trang 3

 Class materials

http://web.mit.edu/acmath/matlab/IAP2007

 Previous session: InterfaceBasics <.zip, tar>

 This session: LinsysCalcODE <.zip, tar>

 Mathematical Tools at MIT web site

http://web.mit.edu/ist/topics/math

Trang 4

MATLAB Toolboxes & Help

+ Mathematics

+ Matrices and Linear Algebra

+ Solving Linear Systems of Equations + Inverses and Determinants

Eigenvalues

+ Polynomials and Interpolation

+ Convolution and Deconvolution

+ Differential Equations

+ Initial Value Problems for ODEs and DAEs

Trang 5

MATLAB Calculus & ODEs

Integration & Differentiation Differential Equations

ODE Solvers

Trang 7

More Polynomial Integration

Trang 9

Differential Equations

 Ordinary Differential Equations (ODE)

 Differential-Algebraic Expressions (DAE)

 MATLAB solvers for ODEs and DAEs

>> ode45; ode23; ode113; ode23s …

y' = f (t, y)

M (t, y)y' = f (t, y)

Trang 10

ODE and DAE Solvers

>> [T,Y] = solver ( odefun , tspan ,Y0)

solver : ode45, ode23, etc.

odefun : function handle

tspan : interval of integration vector

Y0: vector of initial conditions

[T, Y]: numerical solution in two vectors

Trang 11

ODE Example: Mars Lander

 Entry, descent, landing

(EDL) force equilibrium

Trang 12

ODE Example (continued)

Trang 13

PDE Solver

 Partial Differential Equations (PDEs)

 Elliptic and parabolic

e.g Laplace’s equation:

 Numerical PDE solver: pdepe

Trang 14

MATLAB Linear Systems

Linear Equations & Systems Eigenvalues & Eigenvectors Linear Dynamic Networks

Trang 16

Systems of Linear Equations

Trang 17

Solving Linear Equations

Trang 18

State Equation

 Ordinary Differential Equations

 Linear systems -> State Equation

 Eigenvalues, λ i , and eigenvectors, v i ,

x= Ax

Trang 19

Linear Dynamic Networks

 Solution using eigenvalue method

 Identify the network’s states ………

 Identify initial conditions ………

 Find the state equation ……….

 Find eigenvalues & eigenvectors …………

 The general solution is ……….

Trang 20

_ R 4 Ω 2

C 1

0.5F

L 4 2H

di 4 dt

Trang 21

Example: RCL Circuit (continued)

R 3

6 Ω +

_ R 4 Ω 2

C 1

0.5F

L 4 2H

Trang 22

RCL Circuit: MATLAB Solution

Trang 23

Linear Systems Exercises

 Matrices & vectors

 Systems of linear equations

 Eigenvalues & eigenvectors

Follow instructions in m-file …

Trang 24

Complex Eigenvalues

 Example: complex eigenvalues and

eigenvectors from state equation

 Euler’s Formula

 Solution in terms of real variables

>> x1 =( cos (3*t)- sin (3*t))* exp (-t)

Trang 27

+ _

Trang 28

Example: RC Circuit (continued)

Trang 29

RC Circuit: MATLAB Solution

Trang 30

Linear Systems Exercises

 Exercise Two: convolution.m

 Matrices & vectors

 Convolution

Follow instructions in m-file …

Ngày đăng: 12/01/2014, 22:02

TỪ KHÓA LIÊN QUAN