1. Trang chủ
  2. » Luận Văn - Báo Cáo

11 introduction to taylor model methods neher

43 328 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Introduction to Taylor model methods
Tác giả Markus Neher
Trường học Karlsruhe Institute of Technology
Chuyên ngành Applied and Numerical Mathematics
Thể loại Thesis
Năm xuất bản 2009
Thành phố Karlsruhe
Định dạng
Số trang 43
Dung lượng 429,76 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Introduction to Taylor Model MethodsMarkus NeherKarlsruhe Institute of Technology Universit¨ at Karlsruhe TH Research University - founded 1825 Institute for Applied and Numerical Mathem

Trang 1

Introduction to Taylor Model Methods

Markus NeherKarlsruhe Institute of Technology Universit¨ at Karlsruhe (TH) Research University - founded 1825 Institute for Applied and Numerical Mathematics

May 26, 2009

Trang 3

Interval Arithmetic

Trang 4

Why Interval Computations?

Inclusion of discretization or truncation errors in numericalalgorithms

Newton’s method

Global optimization

Numerical integration

.

Modelling of uncertain data

Bounding of roundoff errors

Moore (1966):

Matrix computations, ranges of functions, root-finding,integrals, initial value problems for ODEs

Trang 5

Ranges and Inclusion Functions

Trang 7

Wrapping Effect

Overestimation: Enclose non-interval shaped sets by intervals

√2

Interval evaluation of f on x = ([−1, 1], [−1, 1]):

–2 –1 0 1 2

–2 –1 1 2

–2 –1 0 1 2

–2 –1 1 2

Trang 8

Taylor Models

Trang 9

Symbolic Enhancements of IA

Ultra-arithmetic (Kaucher & Miranker, 1984)

Multivariate Taylor forms (Eckmann, Koch & Wittwer, 1984)Taylor models (Berz & Makino, 1990s–today)

Trang 10

Taylor Models of Type I

f (x ) = pn,f(x − x0) + Rn,f(x − x0), x ∈ x

Interval remainder bound of order n of f on x:

∀x ∈ x : Rn,f(x − x0) ∈ in,f

Taylor model Tn,f = (pn,f , in,f) of order n of f :

∀x ∈ x: f (x) ∈ pn,f(x − x0) + in,f

Trang 11

Taylor Models: Example

Trang 12

TM Arithmetic

Paradigm for TMA:

Higher order terms are enclosed into the remainder interval

Trang 13

Addition and Multiplication

Trang 15

TM Arithmetic: Polynomials, Standard Functions

If Tn,f = (pn,f , in,f) is a Taylor model for f , then Tn,P aνfν

Standard functions: ϕ ∈ {exp, ln, sin, cos, }

Taylor model for ϕ(f ):

Special treatment of the constant part in p n,f

Evaluate p n,ϕ for the non-constant part of T n,f

Trang 16

Taylor Model for Exponential Function

Trang 17

Taylor Model for Exponential Function

Numerical example: For x ∈ x = [−12,12],

Trang 18

Taylor Model for Other Standard Functions

f (x ) =

1 c

1

1 + h(x )/c =

1 c

½

1 −h(x )

c + · · · + (−1)

n³h(x ) c

´ n ¾ + icos(f (x )) = cos c cos(h(x )) − sin c sin(h(x ))

Trang 19

Overestimation

Trang 20

Sources of overestimation:

data errors

discretization or truncation erors

dependency problem: lack of IA to identify differentoccurrences of the same variable

wrapping effect: enclosure of intermediate results intointervals

Trang 21

f (x ) ∈ f (12) + F0(x) · (x −12)

= f (12) + (2 · x − sin x + cos x − ex) · [−12,12]

⊆ [−1.552, 1.469]

Trang 23

IA vs TMA: Wrapping

f (x , y ) =

Ã

x + sin(π2y )cos(π2x ) − y

[−1, 1]

!,

2

Ã[−1, 3]

[−1, 3]

!

Ã[−2, 2][−1, 3]

!

Trang 25

IA vs TMA: Wrapping

Trang 26

Applications

Trang 27

Global Optimization: Challenges

Trang 28

Global Optimization: Branch-and-Bound Method

4 3 2

I

4 3

Trang 29

Global Optimization: Benefits from Taylor Models

Reduced dependency

Range computation with symbolic preconditioning:Linear dominated bounder, quadratic fast bounder(Berz, Kim, Makino, 2005-)

QFB: pn,f + in,f = (pn,f − Q) + Q + in,f,

min(pn,f + in,f) = min(pn,f − Q) + min(Q) + min in,f

Trang 30

ODEs: Verified Integration of IVPs

Interval methods for ODEs:

Moore (1965), Lohner (1987), Nedialkov & Jackson (1999), and many others

Inclusion of flow subject to wrapping

Available enclosure sets are convex

Taylor model methods for ODEs:

Berz & Makino (1990s – today)

Reduced dependency problem

Reduced wrapping effect from non-convex enclosure sets

Trang 31

Integration of Model Problem: COSY Infinity vs AWA

-2 -1.5 -1 -0.5 0 0.5 1 1.5

Trang 32

Taylor Models of Type II

Range of a TM: Rg (U ) = {z = p(x ) + ξ | x ∈ x, ξ ∈ i}

Trang 33

Taylor Models of Type II

(pn: vector ofm-variate polynomials of order n)

· µ x y

= µ

1 + 2x

5 + y

¶ , x , y ∈ [−1, 1]

Rg (U ) =

µ 1 5

¶ + µ

· µ [−1, 1]

[−1, 1]

= µ [−1, 3] [4, 6]

Trang 34

Taylor Models of Type II

(pn: vector ofm-variate polynomials of order n)

µ x

2 + x 2 + y

¶ , x , y ∈ [−1, 1]

Rg (U ):

2 1

Trang 35

Taylor Models of Type II

Trang 36

Taylor Models of Type II

Trang 37

Taylor Model Arithmetic: Composition

Observation: For x ∈ x = [−12,12], we have

ex ∈ U1= 1 + x + 12x2+ [−0.035, 0.035],cos x ∈ U2= 1 − 12x2+ [−0.010, 0.010],but

U1◦ U2 is nota valid enclosure of ecos x, x ∈ x.For example,

(U1◦ U2)(0) = [2.452, 2.556] 63 e = ecos 0

Trang 38

Interval Arithmetic Taylor Models Overestimation Applications

Global Optimization Verified Integration of ODEs Taylor Models Revisited

Taylor Model Arithmetic: Composition

Cause of failure: The interval term of U1 does not fit the range

⇒ ecos x ∈ (U1◦ U2)(x ) ⊆ 5

Trang 39

Interval Arithmetic Taylor Models Overestimation Applications

Global Optimization Verified Integration of ODEs Taylor Models Revisited

Taylor Model Arithmetic: Composition

Cause of failure: The interval term of U1 does not fit the range

Compositions of Taylor models may be computed as above, but

the interval term of U1 must fit 2¡Rg (U2) ∪ {x0}¢

⇒ ecos x ∈ (U1◦ U2)(x ) ⊆ 5

Trang 40

Taylor Model Arithmetic: Composition

Cause of failure: The interval term of U1 does not fit the range

Compositions of Taylor models may be computed as above, but

the interval term of U1 must fit 2¡Rg (U2) ∪ {x0}¢

⇒ ecos x ∈ (U1◦ U2)(x ) ⊆ 5

Trang 41

Interval methods are useful for:

Modelling of uncertain data

Enclosing discretization or truncation errors

Bounding of roundoff errors

Trang 42

Multivariate Taylor models of order n in m dimensions

No of Taylor coefficients: N(m, n) =

µ

m + nm

Trang 43

Thank you.

Questions or Remarks?

Ngày đăng: 12/01/2014, 21:59

TỪ KHÓA LIÊN QUAN