Since the inner conductor is at a higher potential it is positively charged, and the magnitude is: C... The magnitude of the charge for capacitors in series is equal, while the charge is
Trang 124.1: QCV (25.0V)(7.28μF)1.8210 4 C.
m00328.0
m00122
F1029.3
C1035.4
m00328.0
V102
F1045.2
C10148.0
b) (2.45 10 F)(0328 10 m) 0.0091m2
0
3 10
Cd A
m10328.0
d) (1.84 106 V m) 1.63 10 5C/m2
0 0 0
ε
σ Ed V
2 12
NmC1085.8
)m00180.0)(
mC1060.5(
2means
d
c) r2rmeansA4A,C4C,andQ4Q480μC
Trang 224.6: (a) 12.0 V since the plates remain charged.
)m010.0(
2 0
2 0
d
A ε
)CN10(V
A ε C
2 0
Cd
)C
Nm109)(
m10)(
F1000.5(
R
cm24.4m1024
2 0
a
b r r
πε L
C
F1035.4)50.000.5(ln
2)m180.0
Trang 324.10: a) 1.77 5.84.
mF105.31
22
)(ln)(ln
2
12 0 0
b a
r πε
L C
πε r
r r
r
πε L
C
b) (2.60V)(31.510 12 F m)8.1910 11 C m
L
C V L Q
)mm5.1/mm5.3(ln
2)
(ln
r r
πε L
C
a b
b) The charge on each conductor is equal but opposite Since the inner conductor
is at a higher potential it is positively charged, and the magnitude is:
C
1043.6)mm1.5mm5.3(ln
)V35.0)(
m8.2(2)(ln
r r
LV ε CV
Q
a b
b a a b a
b
b a
r kC
kCr r
r r kCr kCr r
r
r r k
)m150.0)(
F10116(
)m125.0)(
m148.0(1
r r k
C
a b
a b
b) The electric field at a distance of 12.6 cm:
.N/C6082)
m126.0(
)V120)(
F1094.8(
2
11 2
r
kCV r
kQ E
c) The electric field at a distance of 14.7 cm:
N/C
4468)
m147.0(
)V120)(
F1094.8(
2
11 2
r
kCV r
kQ E
d) For a spherical capacitor, the electric field is not constant between the
surfaces
Trang 424.14: a)
)F100.6(
1)
F10)0.50.3((
11
11
6 6
3 2 1 eq
.F1042
The magnitude of the charge for capacitors in series is equal, while the charge is
distributed for capacitors in parallel Therefore,
.C1021.8)F1042.3)(
V0.24
eq 2
2 2 2
2 1
C
C Q C
Q C
,C1008.3C
1021
2
5 1
5 1
5 1
1 1
2 V Q C (3.08 10 C)/(3.00 10 F) 10.3V.AndV
V
.V7.13V3
1)
F0.4F00.2(
11
)(
11
4 3 1 1
Then, (2.40 10 6 F)(28.0V) 6.72 10 5C
eq total 4
3 12
C1072.63
3 5
5 total
12 3
Q
1 1
(4.48 10 5C) (4.00 10 6 F) 11.2V
3 3
V
V
8.16)F1000.4()C1072.6
4 4
V0.52(
F1088.1F
1033.5
)F100.5(
1)
F100.3(
11
11
5 6
eq
6 eq
1 5
6 6
2 1 eq
C
C C C
2
V
Trang 524.17: a) (52.0V)(3.0 10 6 F) 1.56 10 4 C.
1 1
C
106.2)F100.5)(
V0.52
2 2
1
1 1
1 1
A ε A ε
d A ε
d C
C
C So the combined capacitance for two
capacitors in series is the same as that for a capacitor of area A and separation (d1d2)
2 1
A A ε d A ε d A ε C C
C So the combined capacitance for two
capacitors in parallel is that of a single capacitor of their combined area (A1 A2) and
common plate separation d.
24.20: a) and b) The equivalent resistance of the combination is 6.0 F, therefore the total charge on the network is: (6.0 F)(36V) 2.16 10 4C
eq eq
charge on the 9 μ capacitor because it is connected in series with the point b So:.0 F
.V24F100.9
C1016.2
6 4
Then V3 V11 V12 V6 V V9 36V24V12V
C
106.3)V12)(
F0.3
3 3 3
F11
11 11 11
C108.4
V
8F100.6
C108.4
6 5
12
12 12
6 5
6
6 6
Trang 624.21: Capacitances in parallel simply add, so:
F
57F
72F)15(F0.9
1F)0.411(
1F
μ μ
x μ
μ x μ
C100.40
6 6
Thus (13.33V)(3.00 10 6 F) 80.0 10 6 C
1
parallel combination of C1and C2, its charge must be equal to their combined charge:
C100.120C100.80C
1F
1000.9
11
11
6 6
F21.3
and
V4.37F1021.3
C100.120
6 6
CV
is doubled, the capacitance halves, and the energy stored doubles So the amount of work done to move the plates equals the difference in energy stored in the capacitor, which is
2
ε E ε
u
Trang 7Cd A d
A ε C
c) (3.00 106 V m)(0.0015m) 4500V
max max
)C1080.1(2
6 11
2 8 2
24.27: (4.50 10 4 F)(295V)2 19.6J
2 1 2 2
C
Q C
Q
0
1 1
1
1 2 2
1 2
1
3
23
2so
3
22
3
2)
2(
so2and
V C
Q C
Q V Q Q Q Q
Q Q C
Q C
Q C C C C
3 1 2 3 2
2
2 2 1
2 1
3
13
1)(2)(2
12
1
CV C
Q C
Q C
Q C
Q C
xQ C
U
dx xε dx A Q
The change is then Q ε A dx
2
0
2 0
A ε
Q F Fdx A ε
dxQ U
U
d) The reason for the difference is that E is the field due to both plates The force
is QE if E is the field due to one plate is Q is the charge on the other plate.
Trang 824.30: a) If the separation distance is halved while the charge is kept fixed, then the
capacitance increases and the stored energy, which was 8.38 J, decreases since
2
Q
U Therefore the new energy is 4.19 J
b) If the voltage is kept fixed while the separation is decreased by one half, then the doubling of the capacitance leads to a doubling of the stored energy to 16.76 J, using
J0.25(2
C1020
Since for a parallel plate capacitor
m10734
6
farad10
417.3
)m1060.2)(
mN/C1085.8)(
00.1(
3
12
2 3 2
2 12 0
d
The energy density is thus
3
7 3
2 3
2 12
2 1 2 2
1
m
J1063.5)m10734.6)(
m1060.2(
V)40.2)(
farad10
42.3
)J1020.3(222
)(ln
2
0 0
r
r r r
πε L
C
b
a b a
Trang 924.34: a) For a spherical capacitor:
.V7.38)F1053.8()C1030.3(
F1053.8)m100.0m115.0(
)m115.0)(
m100.0(11
11 9
k r r
r r k
C
a b
b a
2
)V7.38)(
F1053.8(2
2 0 2 0
)m126.0(
)F1094.8()V120(22
22
r
kq ε E ε u
.mJ1064
u
b) The same calculation for r 14.7cmu8.8310 5 J m3
c) No, the electric energy density is NOT constant within the spheres
)m120.0(
)C1000.8(32
14
12
12
4
2 9
0 2
2
2 0 0
2 0
q πε ε E ε u
b) If the charge was –8.00 nC, the electric field energy would remain the same
since U only depends on the square of E.
24.37: Let the applied voltage be V Let each capacitor have capacitance 2
2 1
2 2
2
1 p
2
;2)(2
;2
2
.voltagewith
capacitorsingle
afor)
b4
2
Q Q CV CV
Q CV V
C Q
V CV
Q U U
CV CV
Trang 1024.38: a) CKε0A d gives us the area of the plates:
2 4 2
2 12
3 12
0
m10475.8)mN/C1085.8)(
00.1(
)m1050.1)(
farad10
00.5
2
C)N1000.3)(
m10475.8)(
mNC1085.8)(
00.1
(
10
4 2
4 2
2 12
b) Again, QKε0A(V d)2.70ε0A(V d) If we continue to think of V d as
the electric field, only K has changed from part (a); thus Q in this case is
.C1008.6C)10
dielectric creates the bound charges on its surface
mV1050.2
mV1020.3
E
.mC
σ i
c) U CV uAd Kε E2Ad
0 2 1 2
)V5500)(
F1025.1
7 0
Kε
CV A V
AE Kε d
A Kε
C
24.42: Placing a dielectric between the plates just results in the replacement of for0in the derivation of Equation (24.20) One can follow exactly the procedure as shown for Equation (24.11)
Trang 11σ i
24.44: a) ( 1) ( 1) (2.1)(2.510 7 F)(12V)
0 0 0
Q Q Q
J)1085.1(22
2
1
7 5
0
0 2
V C U
)V1.10)(
F1060.3(
)J1085.11032.2(22
1
2 7
5 5
2 0
U K V
KC U
Trang 1224.46: a) The capacitance changes by a factor of K when the dielectric is inserted Since
V is unchanged (The battery is still connected),
80.1pC
0.25
pC0.45
before
after before
Q
Q C
C
b) The area of the plates is πr2 π(0.0300m)2 2.82710 3m2, and the separation between them is thus
m10002
2
farad10
5.12
)m10827.2)(
mNC1085.8)(
00.1(
3
12
2 3 2
2 12 0
d
Before the dielectric is inserted,
V000
2
)m10827.2)(
mNC1085.8)(
00.1(
)m1000.2)(
C100.25(
2 3 2
2 12
3 12
0 0
Qd
V
V
Q d
A Kε
)m10827.2)(
00.1)(
mNC1085.8(
C100.25
2 3 2
2 12
Q E
Again, since the voltage is unchanged after the dielectric is inserted, the electric field is also unchanged
24.47: a) before: (9.00 10 6 C) (3.00 10 6 F) 3.00 V
0 0
V
after: C KC0 15.0F;QQ0
K V
C Q
Trang 13q πd KE ε
2 0
q q E ε
q q πd E ε
q q ε
b q K
q
24.49: a) Equation (25.22):
0 0
Q A Kε
Q ε
Q ε
Q
E KEA
Qd Ed
d
A ε K d
εA V
Q
m107.4
)m16.0
3
2 0
b) Q CV (4.810 11F)(12V)0.5810 9 C
c) E= V d=(12 V)/(4.710 3m)=2553 V m
d) (4.8 10 11F)(12V)2 3.46 10 9 J
2 1 2 2
a) C 2.4110 11 F b) Q0.5810 9 C
)F1041.2(2
)C1058.0(2
9 11
2 9 2
24.51: If the plates are pulled out as in Problem 24.50 the battery is connected, ensuring
that the voltage remains constant This time we find:
a) C 2.410 11 F b) Q2.910 10 C c)
m
V103.10094.0
2
)V12()F104.2(2
9 2
11 2
Trang 1424.52: a) System acts like two capacitors in series so 1 1 1
12
0 2
2
2 2
2 0 eq
2 0 2
d Q Q C
Q U d
L ε C d
L ε C C
d L
for a single plate (not ε Q A
0 since charge Q is only on one face).
0 4
2 0 2
2 0 3
2 0 1
2
Q L
ε
Q L
ε
Q L
ε
Q L
2 0 2
2 0 3
2 0 1
2 0
22
22
Q L
ε
Q L
ε
Q L
ε
Q L
2 0 2
2 0 3
2 0 1
2
Q L
ε
Q L
ε
Q L
ε
Q L
2 2
0
2 2 0
2 new
2 0
2 2
4 2 0
2 4
2 0
2 4
2 0
2 0 2
2 0
new
23
34
2
12
1
L ε
d Q L ε
d Q L ε
d Q U U U
L ε
d Q d L L ε
Q L ε
Q L
ε
Q ε d L E ε
This is the work required to rearrange the plates
24.53: a) The power output is 600 W, and 95% of the original energy is converted
.J421J
400)s1048.1()W1070.2
0 3
)J421(222
1
2 2
V
U C CV U
m1000.7
)m1020.4
4 0 2 5 0
)m1020.4
2 5 0
Aε C
Therefore the key must be depressed by a distance of:
.mm224.0m1076.4m1000
Trang 1524.55: a) d 2
)1
ln(
π2)
)(ln(
2)
Lε πr r
d
L ε r
r d
L πε r
r
L πε C
a a
a a
Q
eq
4 C,and10
1.12
V)
(28 C C1C2 13.0μF.Sotheoriginalenergystoredis
:isstoredenergy new
theSoF
0.13same,
the
still
isecapacitancequivalent
theand,C104.1is
chargetotal
the
now
so
,capacitorsthe
flipandDisconnectJ
1010.5V)(28F)100.13(
eq
4 1
2
3 2
6 2
1 2
eq
2
1
μ C
Q Q Q
J1054.7F)100.13(2
)C104.1(2
3 3
4
4 6
2 4
eq 2
Q U
24.57: a) Ceq 4.00μF 6.00μF10.00μF, andQ total Ceq V (10.00μF)(660V)6.610 3C The voltage over each is 660 V since they are in parallel So:
C
1096.3)V660()F00.6(
C
1064.2)V660()F00.4(
3 2
2 2
3 1
1 1
C Q
μ V
C Q
b) Q total 3.9610 3 C2.6410 3 C1.3210 3C,andstillCeq 10.00F,
so the voltage is V = Q/C = (1.3210 3 C) (10.00 μF)132V,and the new charges:
C
1092.7)V132)(
F00.6(
.C1028.5)V132)(
F00.4(
4 2
2 2
4 1
1 1
C Q
μ V
C Q
Trang 16b) If one capacitor is a moderately good conductor, then it can be treated as a
“short” and thus removed from the circuit, and one capacitor will have greater than 600
V over it
24.59: a) 1 1 1 1 1 5 2 2 and
5 1 1 1 2 1
C C C C C
33
53
221
2 1 eq 4 3
C C C C C
V44(V
V88(V
88)66(2220
So
4 4
3 2
1
4 3
4 2
Q
V V μ
Q V
Trang 1724.60: a) With the switch open: 61F1 4.00 F
F
31
1 F
61F
31
C μ μ μ μ
C108.4V)(210F)00.4
capacitor carries 4.20 10 4 C The voltages are then just calculated via V=Q/C.
6)(3
1F
6)(3
μ μ
potential difference of 105 V (again, by symmetry)
c) The only way for the sum of the positive charge on one plate of C2and the negative charge on one plate of C to change is for charge to flow through the switch 1
That is, the quantity of charge that flows through the switch is equal to the charge in
;C315
1F4.8
1F
4.8
μ μ
,C102.27C)
1056.7(3andF21F)4.2F8.4F
Q
V
Q μ
μ μ
μ
C
d) (21 F) (10.8V)2 1.22 10 3 J
2 1 2 2
U
Trang 1824.62: a) 2.4 10 F
F6.0
1F4.0
b) Disconnecting them from the voltage source and reconnecting them to
themselves we must have equal potential difference, and the sum of their charges must be the sum of the original charges:
C
101.90V)(316F)1000.6(
C
101.26V)(316F)1000.4(
V
316F
1010.0
C)102(1.582
)(
2and
3 6
2
3 6
1
6 3
2 1
2 1 2 1 2
2 1
C C
Q V
V C C Q Q Q V C Q V
C Q
24.63: a) Reducing the furthest right leg yields 1
F 9
6 1F 9
6 1F 9
.3
b) For the three capacitors nearest points a and b:
C109.7V)(420F)103.2
V(120F)60
111
1
C C C
C654V)(120F)45.5(
F45.5
equiv
μ μ
CV Q
μ C
Trang 1924.65: a) Q is constant.
with the dielectric: V Q CQ (KC0)
without the dielectric: V0 Q C0
3.91V)
V)/(11.5(45.0
3V)(45.02
32
3
)2()3(
;32,3
0 0
eq
0 2 1 eq 0 2 0 1
C
Q C
Q
V
K C
C C C C C C K
a d A ε a d A ε C
a d
d C a d
d d
A ε a d
A ε C
comparable to the capacitance of a typical capacitor in a circuit
Trang 201
0 2 2 2
2 0 0
2 0 2
1
r ε π
Q r
πε
Q ε E ε u R
0
2 2
88
4d) This energy is equal to πε Q R
0
2
4 2
1 which is just the energy required to assemble all the charge into a spherical distribution (Note, being aware of double counting gives the factor of 1 in front of the familiar potential energy formula for a charge Q a distance R2
from another charge Q.)
e) From Equation (24.9): πε Q R
C Q U
0
2 2
8
from part (c) C4πε0R, as in Problem (24.67)
2 0
82
12
1:
πR
r kQ R
kQr ε E ε u R r
82
12
1
2 2
2 0
2
kQ r
kQ ε E ε u R
4:
2
0
4 6 2
0
2
R
kQ dr r R
kQ udr r π udV U
R
r
R R
32
24
R
kQ U
R
kQ r
dr kQ udr r π udV U
R
r
R R
πε ε E ε
0 2 2 2
0 0
2 0
8
λ2
λ2
12
r
r r πε L
U r
dr πε
Lλ urdr πL udV U
/(ln4
λ)/(ln4
2
0
2 2
U r r
L r
r L
Q C
Q
Trang 211
2 1 0
1
2 1
1 1 2
1 1 eq
112
22
2/2
d A
ε
d A
ε
d d
A ε d
A ε C
2 1
2 1 0
eq
K K
K K d
A ε C
24.72: This situation is analagous to having two capacitors in parallel, each with an
area 2A So:
)
(2
22
2 1 0 2
1 2 1
d
A ε d
A ε d
A ε C C
)4.5(
C/m1050
0
2 3
σ E
b) V Ed (1.0107 V/m)(5.010 9 m)0.052V The outside is at the higher potential
c) volume 10 16 m3 R2.8810 6 m
shell volume 4πR2d 4π(2.88106 m)2(5.0109m)5.21019 m3
J.1036.1)m102.5(V/m)100.1()4.5(V)
0 2
1 2 0 2
V)3000()m200.0()50.2
2
2 0
b) Q i Q(11/K)(1.3310 6 C)(11/2.50)7.9810 7 C
)m200.0((2.50)
C1033
2 0
Kε
Q ε
σ E
d) (1.33 10 C)(3000V) 2.00 10 J
2
12
J1000.2
1 2 0 2
Trang 2224.75: a) We are to show the transformation from one circuit to the other:
From Circuit 1:
y
q q
and V bc 2 3 ,
x C
y z y x
z y x x
y z
q C
q K C
q C
q C C C
C C C q
C
q q C
q q C
q
3 3 2 3 1 3
From Circuit 2:
3
2 3 1
1 3
2 1 1
C
q C C
q C
q q C
2 3
1 3
2 1 2
q C
q C
q q C
q
V bc
Setting the coefficients of the charges equal to each other in matching potential equations from the two circuits results in three independent equations relating the two sets of capacitances The set of equations are:
x x
111,11
111
2 1
3 KC y C x
C From these, subbing in the expression for K we get:,
.)(
.)(
.)(
3 2 1
z x z z y y x
y x z z y y x
x x z z y y x
C C C C C C C C
C C C C C C C C
C C C C C C C C
Trang 2324.76: a) The force between the two parallel plates is:
.22
2
)(2
2 0 0
2 2
2 2 0 0
V z
A ε A ε
CV A ε
q ε
qσ qE
b) When V 0, the separation is just z0 So:
.04
222
)(4
2 0 0 2 3 2
2 0 0
k
AV ε z z z z
AV ε z z k
m1082.3m)10
displacements from the equilibrium positions above, the 1.014 mm separation is seen to
be stable, but not the 0.537 mm separation
24.77: a) 0(( ) ) 0 ( ( 1) )
D
L ε xKL L x L D
2
)1()
1(2
0 2
D
L V ε K V K D
dx L ε
2
2
12
1
C
C V C CV
U
2
)1()
1(1
2
2 0 0
0 0
2
D
L V ε K U
U U dx
K DC
L ε V
Trang 2424.78: a) For a normal spherical capacitor: 0 4 0 .
a b
b
r r r πε
C Here we have, in effect, two parallel capacitors, C and L C U
b a L
r r
r r K
b a U
r r
r r C
b) Using a hemispherical Gaussian surface for each respective half:
0 0
2
22
4
r πKε
Q E
Kε
Q πr
4
2 0 0
2
r πε
Q E
ε
Q πr
Q K Q
KQ K
1(2
2
22
1
Q K r
πKε K
22
πKε K
)1(44
)
K πr
Q πr
Q σ
a a
U U
f r a and ( ) 4 2 4πr2(1 K).
Q πr
Q σ
b b
u U
)1(44
)
K πr
KQ πr
Q σ
a a
L L
)
K πr
KQ πr
Q σ
b b
L L
41
11
4
)1()11
a a
f
i
πr
Q K
K K
K πr
Q K
K K σ
σ
a r a
11
4
)1()11
b a
K K
K πr
Q K
K K σ
σ
b r
Trang 2524.79: a)
m105.4
)m120.0()2.4(2
24.80: a) The capacitors are in parallel so:
eff eff
K L
h L
Kh d
WL ε d
Wh Kε d
h L W ε d
WL ε
b) For gasoline, with K 1.95:
4
1full:
2
1
;24.1
2
1
;9