1. Trang chủ
  2. » Khoa Học Tự Nhiên

Tài liệu Physics exercises_solution: Chapter 41 doc

15 284 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Angular momentum quantum numbers (l, ml) and Hydrogen atom energy levels
Chuyên ngành Physics
Thể loại Exercise solution
Định dạng
Số trang 15
Dung lượng 207,28 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

And the lower energy level is since pointsinthe ˆdirection... 41.22: For the outer electrons, there are more inner electrons to screen the nucleus.. b This is the magnitude of the compon

Trang 1

2 34

34 2

s J 10 054 1

s J 10 4.716 )

1 ( ) 1 (         

l l L

4 0

20 ) 1

41.2: a) 2, so 2

max

m b) l(l1) 62.45 c) The angle is arccos

, 6

arccos 

L

L

and the angles are, for m l 2tom l 2,144.7,114.1,90.0,

3

35

,

9

65   The angle corresponding to m l  will always be larger for larger l l

41.3: Ll(l1) The maximum orbital quantum number l  n1.Soif :

5 199 )

200 ( 199 199

200

49 19 ) 20 ( 19 19

20

41 1 2 )

1 ( 1

2

L l

n

L l

n

l l L l

n

The maximum angular momentum value gets closer to the Bohr model value the larger the value of n

41.4: The (l,m l) combinations are (0, 0), (1, 0), (1, 1), (2, 0), (2, 1), (2, 2),

(3, 0), (3, 1),(3, 2),(3, 3),(4, 0),(4, 1),(4, 2),(4, 3),and(4, 4), a total

of 25

25

eV 60 13

m 10 0 1

C) 10 60 1 ( 4

1

4

10

2 19 0

2 1 0

πε r

q q πε U

eV

4 14 eV J 10 60

1

J 10 3 2 19

18

41.6: a) As in Example 41.3, the probability is





0

2

0 2 3 2 2 3

2 2 1

4 2 2

4 4

|

|

a dr πr ψ

P

0803 0 2

5 1

1

b) The difference in the probabilities is

243 0 ) 2 )(

2 5 ( ) ) 2 5 ( 1 ( ) 5 1 (  e 2   e 1  e 1 e 2 

Trang 2

41.7: a) |ψ|2ψ * ψ |R(r)|2|(θ)|2 (Aeim l)(Aeim l)

,

| ) (

|

| ) (

π A

πA d

A

0

2 2

0

2

2

1 1

2

| ) (

2 2

) 4 (

1

1 1

2

1 1 2 12 2 2

4 2 0

E E

E E E E n

e m πε

 a) If m r  m9.1110 31 kg

2 34

4 9 31

2 2 0

4

C Nm 10 988 8 s)

J 10 055 1 ( 2

C) 10 kg)(1.602 10

9.109 )

4

πε

e

m r

2.17710 18 J13.59eV

For 21 transition, the coefficient is (0.75)(13.59 eV)=10.19 eV

b) If ,

2

m

m r  using the result from part (a),

eV

795 6 2

eV 59 13 2

eV) 59 13 ( )

4

0

4

m

m πε

e

m r

 Similarly, the 21 transition, 5.095eV

2

eV 19

 c) Ifm r185 m.8 , using the result from part (a),

eV, 2525

185.8 eV) 59 13 ( )

4

0

4

m

m πε

e

m r

 and the 21 transition gives (10.19 eV)(185.8)=1893 eV

2 34 0

2

2 0 1

C) 10 kg)(1.602 10

109 9 (

) s J 10 626 6 (

π

ε πme

h ε a m

m r

m 10 293

1

 a

2

10 1

2

m r

185.8

1 m

8

1

m r

41.10:  cos( ) sin( ),

l l

integer multiple of 2π so, m l must be an integer

Trang 3

41.11: a ar a

πa dV

ψ a

P

2 2

3

)

(

5 1 ) (

4 4

2 2 4

4 2 2

4 4

) (

2

0

3 2 3 3 3 3

0 2 2 2 2 3

2 2 3









e a

P

e

a e a a a a

e a r a ar a

dr e r a a P

a a r a

r a

o

41.12: a) (5.79 10 5 eV T)(0.400T) 2.32 10 5 eV, b) 2,

l

m B

μ

lowest possible value of m l

c)

41.13: a) g-statel 4#of statesis(2l1)9(m l 0,1, 2,3,4)

b) (5.79 10 5 eV T)(0.600T) 3.47 10 5 eV 5.56 10 24 J

B

U μ B

c) 8 8(5.79 10 5 eV T)(0.600T) 2.78 10 4 eV

B 4 4

4.4510 23 J

41.14: a) According to Fig 41.8 there are three different transitions that are consistent

with the selection rules The initial m l values are 0, 1; and the final m l value is 0 b) The transition from m l 0tom l 0 produces the same wavelength (122 nm) that was seen without the magnetic field

c) The larger wavelength (smaller energy) is produced from the m l 1 tom l 0 transition

d) The shorter wavelength (greater energy) is produced from the m l 1 tom l 0 transition

41.15: a)

B B

, 1 , 3 3

μ

U B B μ U l

n

T) V e 10 (5.79

eV) 10 71 2 (

5

5

B

b) Three m l 0,1

Trang 4

41.16: a) B

m

e

 

2 2

) 00232 2

2

) 00232 2 (

eV 10 78 2

) T 480 0 )(

T V e 10 788 5 ( 2

) 00232 2 (

5

5

b) Since n = 1, l = 0 so there is no orbital magnetic dipole interaction But if n0

there could be since l < n allows for l 0

m

e B

2 ) 00232 2 (

 

2 where

) 00232 2

(

) ( 2 ) 00232 2

(

B B

m

e μ B

m μ U

B m m

e U

s

s

So the energy difference







2

1 2

1 ) 00232 2

U

 U (2.00232)(5.78810 5eV T)(1.45T)

1.6810 4 eV And the lower energy level is (since pointsinthe ˆdirection)

2

1

z B

2

5 , 2 and 2

3 , 2 , 2

3 , 1 , 2

1 , 1 , 2

1 ,

41.19: j quantum numbers are either ,Soif 9 2and7 2,then 4

2

1 or 2

l

The letter used to describe l 4is “g”

λ , cm 21 eV)

10 (5.9

) s m 10 s)(300 eV

10 136 4 (

8

f E

hc

9

8

10 4 1 0.21m

) s m

10

00

3

(

Hz, a short radio wave

b) As in Example 41.6, the effective field is 2 5.1 10 2 T,for

than that found in the example

Trang 5

41.21: a) Classically 2

5

2 and

s

rad 10 2.5

4

3 m) 10 (1.0 kg) 10 2(9.11

s) J 10 5(1.054 4

3 2

5 4

3 5

2

30

2 17 31

34 2

2

ω mR ω

R mω L

b) v(1.010 17 m)(2.51030rad s)2.51013 m s Since this is faster than the speed of light this model is invalid

41.22: For the outer electrons, there are more inner electrons to screen the nucleus.

41.23: Using Eq (41.27) for the ionization energy: 2 (13.6eV)

2 eff

n

Z

electron sees Zeff 2.771andn5

eV

4.18 eV)

(13.6 5

(2.771) 2

2

 E

41.24: However the number of electrons is obtained, the results must be consistent with

4 3

4

3

3s2 p6 s2 d10 p2

41.25: The ten lowest energy levels for electrons are in the n = 1 and n = 2 shells.

states

6 : 2

1 ,

1 , 0 ,

1 , 2

states

2 : 2

1 ,

0 ,

0 , 2

states

2 : 2

1 ,

0 ,

0 , 1

s l

s l

s l

m m

l n

m m

l n

m m

l n

41.26: For the s4 state, E 4.339eVand Zeff 4 (4.339) (13.6) 2.26

Similarly, Zeff 1.79 for the 4p state and 1.05 for the 4d state The electrons in the states with higher l tend to be further away from the filled subshells and the screening is more

complete

Trang 6

41.27: a) Nitrogen is the seventh element (Z = 7) N has two electrons removed, so 2  there are 5 remaining electrons  electron configuration is 1s22s22p

2

4) (7 eV)

2

2

n

Z E

c) Phosphorous is the fifteenth element (Z = 15) P has 13 electrons, so the 2 electron configuration is 1s22s22p63s23p

d) The least tightly held electron: (13.6eV) 13.6eV

3

12) (15 2

2

E

4

e 6 13

eff

2 eff

becomes larger going down the columns in the periodic table

41.29: a) Again using 2 (13.6eV),

2 eff

n

Z

E n  

the outermost electron of the BeL shell

(n = 2) sees the inner two electrons shield two protons so Zeff 2

eV

13.6 eV)

(13.6 2

2 2

2

E 2

b) For Ca, outer shell has n = 4, so (13.6eV) 3.4eV

4

2 2

2

E

41.30: E kx  Z( 1)2(10.2eV)

, 0 28 eV

10.2

eV 10 7.46 1

3

Z

which corresponds to the element Nickel (Ni)

41.31: a) Z 20: f (2.481015 Hz)(201)2 8.951017 Hz

m

10 3.35 Hz

10 8.95

s m 10 3.00 λ

keV 3.71 Hz) 10 (8.95 s) eV 10 (4.14

10 17

8

17 15

f c

hf E

b) Z = 27:

m

10 1.79 λ

keV 6.96

Hz 10 1.68

10

18

E f

c) Z 48: f 5.481018Hz, E22.7keV,λ5.4710 11 m

Trang 7

41.32: See Example 41.3; , 2 (2 (2 2 )),

2 2 / 2 2 2

dr

ψ dr e

Cr ψ

maximum, r = a, the distance of the electron from the nucleus in the Bohr model.

0 1

2 0 2

4 2 0 1

2 ) 4 (

1 then ), (

4

1 ) ( and 2 ) 4 (

1

me πε r

U E If r

e πε r

U

me πε

me

πε r r

e

2 4 )

4

(

1

2

2 0 2

0

3 2

2 2 1 2

2 1

a r a

s a

a π ψ

dr r ψ π dV ψ a

r

4 2

4 )

2

(

4 2 2

4 )

2

(

4 )

2

(

3 3 3 4 3

2

3 2 2 2

3

2

2 2 3









a a a e a a

r

P

a r a ar e

a a

r

P

dr e r a a

r

P

a

a r a

a r

13e 4 0.238

41.34: a) For large values of n, the inner electrons will completely shield the nucleus, so

1

ff 

e

Z and the ionization energy would be 13.602eV

350

eV

0

2 350

4 2

2 3.22 10 eV, (650)

eV 13.60

r

m

10 2.24

m)

10 10    5

Trang 8

41.35: a) If normalized, then

4 4 8

1

2 32

4

1 4

4 3 2 3

2 2

2 0

2 2 0

2 2

dr e a

r a

r r a

dr e a

r r

πa

π I

dr r ψ π dV ψ

a r

a r

s s





 

0 n ax n n!1

dx e x

4

3 4(2) 4(6) 1 (24) 8

a a

a a

a a

I

8 24 24  1and isnormalized

8

1

2 3

3 3

a

b) We carry out the same calculation as part (a) except now the upper limit on the

integral is 4a, not infinity.

8

4 3 2

a

r a

r r a

Now the necessary integral formulas are:

) 24 24

12 4

(

) 6 6 3

(

) 2 2

(

5 4

3 2 2 3 4

4

3 3 2

2 3 3

3 2 2

2

a ra

a r a r a r e dr e r

a ra a

r a r e dr e r

a ra a r e dr e r

a r a

r

a r a

r

a r a

r

All the integrals are evaluated at the limits r 0and 4a After carefully plugging in the limits and collecting like terms we have:

)]

824 568 104 ( ) 24 24 8 [(

8

a I

(8 360 ) 0.176 Prob( 4 )

8

Trang 9

41.36: a) Since the given ψ(r)isreal,r2 |ψ|2r2ψ2 The probability density will be an extreme when

0 2

2 )

 

dr

dψ r ψ rψ dr

ψ ψ r rψ ψ

r dr d

This occurs at r 0,a minimum, and when ψ 0,also a minimum A maximum must correspond to ψr dψ dr 0.Within a multiplicative constant,

, ) 2 2 (

1 ,

) 2 ( )

a dr

dψ e

a r r

and the condition for a maximum is

0 4 6 or ), 2 2 ( ) ( ) 2

( r ar ar a r2  raa2 

The solutions to the quadratic are r  a(3 5) The ratio of the probability densities at these radii is 3.68, with the larger density at ra(3 5) b)ψ 0at r2a Parts (a) and (b) are consistent with Fig.(41.4); note the two relative maxima, one on each side of the minimum of zero at r2a

41.37: a) arccos 

L

L

L This is smaller for L z and as large as possible Thus L

1 and

) 1 (

1 arccos

1) ( 1) ( and

) 1 (

n n

n θ

n n l

l L n

m L

L

l

b) The largest angle implies ln1,m l l (n1)

 (1 1 )

arccos

) 1 (

) 1 ( arccos

n

n n

n

θ L

41.38: a) L2xL2yL2 L2zl(l1)2 m l22 so L2xL2yl(l 1)m l2

b) This is the magnitude of the component of angular momentum perpendicular to the

z-axis c) The maximum value is l(l 1) L, when m l 0 That is, if the electron is known to have no z-component of angular momentum, the angular momentum must be perpendicular to the z-axis The minimum is l when m l  .l

Trang 10

41.39: r e r a

a r

5 24

1 )

a r

e a

r r a dr

3

24

, 4

; 0 4

when

a

r r dr

In the Bohr model,r nn2asor2 4a,which agrees

41.40: The time required to transit the horizontal 50 cm region is

ms

952 0 s m 525

m 500

x

v

x t

The force required to deflect each spin component by 0.50 mm is

N 10 98 1 ) s 10 952 0 (

) m 10 50 0 ( 2 mol atoms 10

022 6

mol kg 1079 0

2 3

3 23

2 z

z





t

z m

ma

F

According to Eq 41.22, the value of μ is z

m A 10 28 9

|

z

μ

Thus, the required magnetic-field gradient is

m

T 3 21 T J 10 28 9

N 10 98 1

24

22

z

z

z

μ

F

dz

dB

41.41: Decay from a d to 2 state in hydrogen means that p n3n2andm l

0 , 1 0

,

1

,

m l However selection rules limit the possibilities for decay The emitted photon carries off one unit of angular momentum so lmust change by 1 and hence m l must change by 0 or 1 The shift in the transition energy from the zero field value is just

) (

2 )

(

2 3 2

m

B e B μ m m

where

3

l

m is the d m l value and

2

l

m is the 2p m l value Thus there are only three different energy shifts They and the transitions that have them, labeled by m are:,

1 2 , 0 1 ,

1

0

:

2

1 1 , 0 0 ,

1

1

:

0

1 0 , 0 1 ,

1

2

:

2

m

B

e

m

B

e

Trang 11

41.42: a) The energy shift from zero field is U0 m lBB.Form l 2,U0 

eV

10 8.11 T) (1.40 T) V e

10

79

5

(

) 1 ( ,

1 For eV 10 1.62 T) 40 1 ( ) T V e 10

79

5

(

)

2

(

5 5

0 4

5

b) | λ| λ ,

0

|

|

0 EE

5

36 0

0 (13.6eV((14) (19)),λ

(a) part from eV 10 09 8 eV 10 11 8 eV 10 62 1 and

m

10

563

Then, |λ|2.8110 11 m0.0281nm The wavelength corresponds to a larger energy change, and so the wavelength is smaller

41.43: From Section 38.6: ( )

0

1 e E1 E0 kT

n

n    We need to know the difference in energy

between the

2

1

s

2

1

Bm B μ B

μ U

So U U 2.00232μBB

2 2

 

kT B

μ B

e n

n (2.00232)

2

B

e

e

) T 10 482 4 (

K) (300 K) J 10 (1.381 T)B J 10 (9.274 (2.00232)

1 3

23 24

a) 5.00 10 T 0.9999998

2

2

n

n B

b) 0.500T 0.9978

2

2 

n

n B

c) 5.00T 0.978

2

2 

n

n B

41.44 Using Eq 41.4

, ) 1

L

and the Bohr radius from Eq 38.15, we obtain the following value for v

s

m 10 74 7 ) m 10 29 5 ( ) 4 ( kg) 10 (9.11 2

s) J 10 63 6 ( 2 )

(

)

1

11 31

34 0

π a

n

m

l

l

The magnetic field generated by the “moving” proton at the electrons position can be calculated from Eq 28.1

T 277 0 m)

10 29 5 ( ) 4 (

) sin(90 s) m 10 (7.74 C) 10 60 1 ( A) m T 10 ( sin

|

|

5 19

7 2

r

v

q

π

μ

Trang 12

41.45: m can take on 4 different values: s , , , 23.

2 1 2 1 2

s

have 4 electrons, each with one of the four different m values s

a) For a filled n1 shell, the electron configuration would be 1s4; four electrons and Z 4 For a filled n2 shell, the electron configuration would be 1s42s42p12; twenty electrons and Z 20

b) Sodium has Z 11; 11 electrons The ground-state electron configuration would

be 1s42s42p3

41.46: a) Z2 (13.6eV)(7)2 (13.6eV)666eV b) The negative of the result of part (a), 666 eV c) The radius of the ground state orbit is inversely proportional to the nuclear charge, and (0.52910 10 m) 77.5610 12 m

Z a

) (

λ

2

2 2

1 1

1

E

hc E

hc

where E is the energy found in part (b), and 0 λ2.49nm

41.47: a) The photon energy equals the atom’s transition energy The hydrogen atom

decays from n2ton1, so:

m

10 1.22 J

10 1.63

s) m 10 (3.00 s) J 10 (6.33 λ

J 10 63 1

eV) J 10 (1.60 eV) 2 10 ( ) 1 (

1 (2)

1 eV 60 13

7 18

8 34

-18

19 2

2





E hc E

b) The change in an energy level due to an external magnetic field is just Um l μBB The ground state has m l 0,and it is not shifted The n = 2 state has m l 1, so it is shifted by

J 10 04 2

) T (2.20 ) T J 10 274 9 ( 1 (

23

24

U

and since

m

10 1.53 J

10 1.63

J 10 2.04 m) 10 22 1 ( λ

λ λ

λ

12 18

23



E E E

E

Since the n = 2 level is lowered in energy (brought closer to the n = 1 level) the change in

energy is less, and the photon wavelength increases due to the magnetic field

41.48: The effective field is that which gives rise to the observed difference in the energy

level transition,

λ λ

λ λ 2

λ λ

λ λ

2 1

2 1 2

1

2 1 B







e

πmc μ

hc μ

E B

Substitution of numerical values gives B3.6410 3 T, much smaller than that for sodium

Ngày đăng: 24/01/2014, 07:20

TỪ KHÓA LIÊN QUAN

w