1. Trang chủ
  2. » Khoa Học Tự Nhiên

Tài liệu Physics exercises_solution: Chapter 39 pdf

19 203 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Physics Exercises Solution: Chapter 39
Định dạng
Số trang 19
Dung lượng 259,08 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Note that the kinetic energy found this way is much smaller than the rest energy, so the nonrelativistic approximation is appropriate.. Again, the nonrelativistic approximation is approp

Trang 1

39.1: a) 2.37 10 kg m s.

) m 10 80 2 (

) s J 10 63 6 ( λ

10

34

h p p h

) kg 10 11 9 ( 2

) s m kg 10 37 2 ( 2

18 31

2 24

2

m

p

K

39.2:

mE

h p

h

2

λ 

V) e J 10 60 1 ( ) eV 10 20 4 ( ) kg 10 64 6 ( 2

) s J 10 63 6

19 6

27

34

) s m 10 70 4 ( kg) 10 11 9 (

s J 10 63 6

6 31

34

v m

h

e e

kg 10 67 1

kg 10 11 9 λ

27

31





p

e p

m

m

m) 10 20 0 (

) s m 10 00 3 ( s) eV 10 136 4 (

8 15

E

b)

kg) 10 11 9 ( 2

)) m 10 20 0 ( ) s J 10 626 6 ((

2

) λ (

2 9 34

2 2

m

h m

p

K

6.010 18 J37eV

Note that the kinetic energy found this way is much smaller than the rest energy, so the

nonrelativistic approximation is appropriate

J 10 3 8 kg)

10 64 6 ( 2

)) m 10 20 0 ( s) J 10 626 6 ((

2

) λ ( 2

22 27

2 9 34

2 2

m

h m

p K

5.2 meV Again, the nonrelativistic approximation is appropriate

39.5: a) In the Bohr model

nh r

mv n  The de Broglie wavelength is

m 10 32 3 ) m 10 29 5 ( 2 λ m 10 29 5 :

1 for

2

1

11 0

n

r π mv

h

p

This equals the orbit circumference

4

) 16 ( 2 λ 16

) 4 ( :

4 0 0

2

n

λ 1.33 10 9 m 4

 The de Broglie wavelength is a quarter of the circumference of the orbit, 2πr4

39.6: a) For a nonrelativistic particle, ,so

2

2

m

p

2

λ

Km

h p

h 

 b) (6.6310 34 Js) 2(800eV)(1.6010 19 J/eV)(9.1110 31Kg)4.3410 11m

Trang 2

39.7: 3.90 10 m.

) s m 340 ( ) kg 005 0 (

s J 10 63 6

mv

h p

h

We should not expect the bullet to exhibit wavelike properties

39.8: Combining Equations 37.38 and 37.39 gives

pmc γ2 1 a) λ (h mc) 2 14.4310 12 m

p

h

(The incorrect nonrelativistic calculation gives 5.0510 12 m.)

b) (h mc) 2 17.0710 13 m

39.9: a) photon

V) e J 10 602 1 ( ) eV 0 20 (

) s m 10 998 2 ( ) s J 10 626 6 ( λ

so

8 34

E

hc hc

E

electron

p2 (2m) so p 2mE 2(9.109 10 31 kg)(20.0eV)(1.602 10 19 J eV)

E

s m kg

10

416

2   24 

nm 274 0

λh p

b) photon Ehc λ7.94610 19 J4.96eV

electron λh p so ph λ2.65010 27 kgm s

eV 10 41 2 J 10 856 3 ) 2

E

c) You should use a probe of wavelength approximately 250 nm An electron with

250

λ nm has much less energy than a photon with λ250 nm, so is less likely to damage the molecule

39.10:

λ

λ

m

h v mv

h

2 2 2

λ 2 λ 2

1 2

1

m

h m

h m mv

They will not have the same kinetic energy since they have different masses.

4 27

31 p e

2 e 2

2 p 2

e p

10 46 5 kg 10 67 1

kg 10 11 9

λ 2

λ 2





m m m

h m h K

K

Trang 3

39.11: a) λ0.10nm

keV 12 λ )

c

eV 150 )

b

s m 10 3 7 ) λ ( so

λ 2 2

1

6

hc

E

mv

E

m h v h

mv

p

d) The electron is a better probe because for the same λ it has less energy and is less damaging to the structure being probed

39.12: (a) λh mvvh mλ

Energy conservation: 2

2

1mv V

V 9 66

) m 10 15 0 ( ) kg 10 11 9 ( ) C 10 60 1 ( 2

) s J 10 626 6 (

λ 2 2

) ( 2

2 9 31

19

2 34 2

2 2

λ 2

em

h e

m e

mv

m 10 15 0

) s m 10 0 3 ( ) s J 10 626 6 ( λ

15 9

8 34

photon

hf hc E

V 8310 C

10 6 1

J 10 33 1

19

15 photon

photon

e

E V

E K V e

39.13: For m =1,

eV

432 0 J 10 91 6

) 6 28 ( sin ) m 10 10 9 ( ) kg 10 675 1 ( 2

) s J 10 63 6 ( sin

2

2 sin

λ

20

2 2 11 27

2 34 2

2 2

E

θ md

h E

mE

h θ d

39.14: Intensity maxima occur when dsinθmλ

.

ME

mh θ

d ME

h p

h

2 sin

so 2

(Careful! Here, m is the order of the maxima, whereas M is the mass of the incoming

particle.)

a)

) 6 60 sin(

) V e J 10 60 1 ( ) eV 188 ( ) kg 10 11 9 ( 2

s) J 10 63 6 ( ) 2 ( sin

34

θ ME

mh d

2.0610 10 m0.206nm

b) m = 1 also gives a maximum.

one

other only the is This 8

25

m) 10 06 2 ( ) V e J 10 60 1 ( ) eV 188 ( ) kg 10 11 9 ( 2

) s J 10 63 6 ( ) 1 ( arcsin

10 19

31

34

θ

If we let m3, then there are no more maxima

Trang 4

c)

) 6 60 ( sin ) m 10 60 2 ( kg) 10 11 9 ( 2

) s J 10 63 6 ( ) 1 ( sin

2 34 2

2 2

2 2

θ Md

h m E

7.4910 18 J46.8eV

Using this energy, if we let m2, thensinθ 1.Thus, thereisnom2 maximum in this case

39.15: Surface scattering implies d sinθmλ

341 0 m 10 34 8

m 10 96 4 arcsin So

m

10 96 4 λ

J/eV) 10

60 1 ( ) eV 840 ( ) kg 10 64 6 ( 2

s J 10 63 6 2

λ

But

] λ arcsin[

: 1 If

11 13 13

19 27

34

θ

mE

h p

h

d θ

m

39.16: The condition for a maximum is sin λ λ ,so arcsin 

dMv

mh θ

Mv

h p

h m

θ d

(Careful! Here, m is the order of the maximum, whereas M is the incoming particle mass.)

dMv

h θ

m 1 1 arcsin









) s m 10 26 1 ( ) kg 10 11 9 ( ) m 10 60 1 (

) s J 10 63 6 ( ) 2 ( arcsin

2

07 2 ) s m 10 26 1 ( kg) 10 11 9 ( ) m 10 60 1 (

s J 10 63 6 arcsin

4 31

6

34 2

4 31

6

34

θ m

14

4 

b) For small angles (in radians!) y,so

cm

81 1 cm 81 1 cm 61 3

cm 61 3 180

radians )

14 4 ( ) cm 0 50

(

cm

81 1 180

radians )

07 2 ( ) cm 0 50

(

1 2 2

1

y y

π y

π y

39.17: a)

m) 10 00 1 ( ) kg 1200 ( 2

) s J 10 63 6 ( 2

2

34

π x πm

h v

π

h x v m π

h x

s m 10 79

8   32

 b) Knowing the position of a macroscopic object (like a car) to within 1.00 μm is, for all practical purposes, indistinguishable from knowing “exactly” where the object is Even with this tiny position uncertainty of 1.00 μm, the velocity uncertainty is insanely small by our standards

Trang 5

39.18: a)

2 2

y uncertaint minimum

for

h v

π

h y v m π

h y

) m 10 0 2 ( kg) 10 67 1 ( 2

) s J 10 63 6

12 27

34

π

b) For minimum uncertainty,

m

10 63 4 ) s m 50 2 0 ( kg) 10 11 9 ( 2

s) J 10 63 6 ( 2

2

4 31

34

π v πm

h p

π

h z

z z

39.19: Heisenberg’s Uncertainty Principles tells us that:

h

p

xx

 We can treat the standard deviation as a direct measure of uncertainty

is

claim the so 2 Therefore

s J 10 05 1 2 but s J 10 6 3 ) s m kg 10 0 3 ( m) 10 2 1 (

valid not π

h p x

π

h p

x

x

x

39.20: a) (x)(mv x)h 2π, and setting v x (0.010)v xand the product of the uncertainties equal to h 2/ π (for the minimum uncertainty) gives v xh (2πm(0.010)x)57.9m s

b) Repeating with the proton mass gives 31.6 mm s

2

m 10 215 0 2

) s J 10 63 6 ( 2

2

25 9

34





π x π

h p π

h x

p

m

18 5 ) s m 81 9 ( kg) 00 1 (

J 8 50 )

d

J

50.8 J) 10 95 4 ( Ni kg 10 75 9

kg 00 1 )

c

eV

10 09 3 J 10 95 4 ) kg 10 75 9 ( 2

) m 10 82 9 ( 2

)

b

2

total total

24 26

total

5 24

26

2 25 2

mg

K h K

mgh

NK K

m

p

K

e) One is claiming to know both an exact momentum for each atom (giving rise to an exact kinetic energy of the system) and an exact position of each atom (giving rise to an exact potential energy of the system), in violation of Heisenberg’s uncertainty principle

2

2 10 2

9

mc E

π

h t

s

10 20 3 ) J 10 30 3 ( 2

s J 10 63 6 2

25 10

34 2

π mc π h t

Trang 6

39.23:    

69 8 J 10 39 1 s) 10 6 7 ( 2

s) J 10 63 6 ( 2

2

14 21

34

π t π

h E π

h t

E

MeV

0869

0

eV

104 

MeV 3097

MeV 0869

2

2

c

c E

E

s) 10 2 5 ( 2

s) J 10 63 6 ( 2

13 32

3

34

π t π

h E

39.25: To find a particle’s lifetime we need to know the uncertainty in its energy.

s 10 08 1 ) J 10 81 9 ( 2

s J 10 63 6 2

J 10 81 9

s) m 10 00 3 ( ) kg 10 67 1 ( ) 5 4 ( ) 145 0 ( ) (

24 11

34 11

2 8 27

2

π E π

h t

c m E

2

) λ ( so , 2

) λ ( 2

2 2

2

me

h V m

h m

p K eV

b) The voltage is reduced by the ratio of the particle masses,

V

229 0 kg 10 67 1

kg 10 11 9 V) 419

31

2

λ

mE

h p

h 

 But the energy of an electron accelerated through a potential is just EeV

m

10 34

4

λ

) V 800 ( C) 10 60 1 ( ) kg 10 11 9 ( 2

) s J 10 63 6 ( 2

λ

11

19 31

34

e

e

V m h

b) For a proton, all that changes is the mass, so

m 10 01 1 λ

m 10 34 4 kg 10 67 1

kg 10 11 9 λ λ

12

11 27

31

e

e p

e p

m m

39.28:  ψsin ωt, so

2  * ψ*ψsin2ωtψ2sin2ωt.

2 is not time-independent, so is not the wavefunction for a stationary state

39.29: a) ψ xAsinkx The probability density is ψ2  A2 sin2kx, and this is greatest when

5 , 3 , 1 , 2 1

sin2kx kxnπ n

, 1,3,5

4

λ ) λ 2 2(

π

nπ k

nπ x

Trang 7

b) The probability is zero when ψ2 0, which requires

2 , 1 , 0 , 2

λ 0

sin2       n n

k

nπ x nπ kx kx

39.30: a) The uncertainty in the particle position is proportional to the width of ψ x , and is inversely proportional to  This can be seen by either plotting the function for different values of  , finding the expectation value x2 ψ2x2dx for the normalized wave function or

by finding the full width at half-maximum The particle’s uncertainty in position decreases with increasing  The dependence of the expectation value x on 2  may be found by considering

dx e

dx e x x

x

x

2 2

2

2 2 2

dx

e 2 x2

ln 2

, 4

1 2

1 ln 2

du

e u

where the substitution u xhas been made (b) Since the uncertainty in position decreases, the uncertainty in momentum must increase







iy x

iy x y x f iy

x

iy x y

x

1

* 2









iy x

iy x iy x

iy x f f f

39.32: The same.

) , , ( ) , , ( )

, , (x y z 2 ψ* x y z ψ x y z

ψ(x,y,z)e i 2 (ψ*(x,y,z)ei)(ψ(x,y,z)ei)

ψ*(x,y,z)ψ(x,y,z)

The complex conjugate means convert all i’s to i’s and vice-versa e i ei 1

39.33: Following the hint:

If we Taylor expand sin(ax ) about a point x , we get 0 f(x0) f(x0)(xx0) 

) )(

cos(

)

sin(ax0 a ax0 xx0   If x is small we can even ignore the first order term and x0

sin(ax )  sin (ax ).0

For us xx0 0.01L which is small compared to 

L

πx L

z y x ψ

2 sin

2 ) , , ( so

sin

L

πz L

πy

Trang 8

a)

4 0 0

0

L z y

10 1.00 )

0.01 ( 2

2 2 4

sin

2



L V

π L

dV ψ P

b)

2

1 0 0

0  yz

x

2 sin

2

L L

V

π L

dV ψ P

39.34: Eq (39.18): Uψ Eψ

dx

ψ d

2

2 2 2

 Let ψ12

) (

) (

) (

2

2

Bψ Aψ E Bψ Aψ U Bψ Aψ dx

d

0 2

2 2 2 1

1 2

1 2 2









dx

ψ d m B Eψ Uψ dx

ψ d

m

But each of ψ and 1 ψ satisfy Schröedinger’s equation separately so the equation still 2

holds true, for any A or B

2 2

ψ CE ψ BE Uψ dx

ψ d

 

If ψ were a solution with energy E, then

2 1

2 2 1

) (

) (E1 E ψ1 C E E2 ψ2

This would mean that ψ is a constant multiple of 1 ψ2,andψ1andψ2 would be wave functions with the same energy However, E 1E 2, so this is not possible, and ψ cannot be a solution to

Eq (39.18)

39.36: a)

eV) J 10 eV)(1.60 kg)(40

10 2(9.11

s) J 10 (6.63 2

λ

19 31

34

mK h

1.9410 10m

eV) J 10 6 2(40eV)(1

kg) 10 1 (2.5m)(9.1 2

7 19

2 31

m E

R v

R

c) The width is 2 λ'andw v t p t m,

a R w

w   y  y where t is the time found in part (b) and a is the slit width Combining the expression for ,  2 λ 2.6510 28kgm s

at

R m p

h y

y

 which is the same order of magnitude

Trang 9

39.37: a) E  hc λ12eV

b) Find E for an electron with λ0.1010 6m

λh pso ph λ6.62610 27kgm s

eV 10 1.5 ) 2

E

V 10 1.5

so    4

E

s m 10 7.3 kg) 10 (9.109 s)

m kg 10 6.626

v

c) Same λso same p

V 10 8.2 and

eV 10 8.2 so

kg 10 1.673 now

but ) 2

E

s m 4.0 kg) 10 (1.673 s)

m kg 10

v

39.38: (a) Single slit diffraction: asinθmλ

m 10 5.13 m)sin20

10 (150 sin

λ

λh mvvh m

s m 10 1.42 m) 10 kg)(5.13 10

(9.11

s J 10

8 31

34

v

(b) asinθ2 2λ

m 10 150

m 10 5.13 2

λ 2

8



a θ

θ2  43.2 

39.39: a) The first dark band is located by sinθ λ a

sin25.0

150nm sin

θ

a

b) Find λfor the electrons

λ

18 photon

hc

E

Ep 2 (2 m)so p 2mE 1.55310 24kgm s

λh p4.26610 10m

No electrons at locations of minima in the diffraction pattern The angular position of these minima are given by:

, 3 2, 1, ),

0.00120 (

) m 10 355 ( ) m 10 4.266 ( λ

; 0.207 ,

3

; 0.138 ,

2

; 0.0689

,

m

39.40: According to Eq 35.4

nm

600 2

00) m)sin(0.03 10

(40.0 sin

λ

6

m

θ d

The velocity of an electron with this wavelength is given by Eq 39.1

s m 10 1.21 )

m 10 600 )(

kg 10 9.11 (

) s J 10 6.63 ( λ

3 9

31

34

m

h m

p v

Since this velocity is much smaller than c we can calculate the energy of the electron classically

eV 4.19 J 10 6.70 )

s m 10 kg)(1.21 10

(9.11 2

1 2

μ mv

Trang 10

39.41: The de Broglie wavelength of the blood cell is

m 10 1.66 )

s m 10 kg)(4.00 10

(1.00

s) J 10 (6.63

3 14

34

mv h

We need not be concerned about wave behavior

39.42: a)

mv c

v h p h

2 2

2 1



2

2 2 2 2

2 2 2 2

λ

c

v h h c

v h v



2 2

2 2 2 2 2

c

v h v









1

λ

2 2 2 2

2

2 2 2

2 2

h

c m c c

h m

h v

λ 1

2 2

h mc

c v

2

1 1

) (

λ 1

2 2

h

mc c

mc h

c





2

λ 2

2 2 2

h

c m

c) λ 1.00 10 15

mc

h

2 34

2 15 2

8 2

31

10 50 8 s)

J 10 2(6.63

m) 10 (1.00 s) m 10 (3.00 kg) 10

) 10 8.50 1 ( ) Δ 1

2 2

λ

V mq

h mE

h p

h

m 10 1.10 λ V) C)(125 10

kg)(1.60 10

2(9.11

s J 10 6.63

19 31

34

 b) For an alpha particle:

m 10 9.10 V)

C)(125 10

kg)2(1.60 10

2(6.64

s J 10 6.63

19 27

34

Ngày đăng: 24/01/2014, 07:20

TỪ KHÓA LIÊN QUAN