1. Trang chủ
  2. » Luận Văn - Báo Cáo

de cuong on tap toan 8 hk2

8 12 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 380,5 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Tính độ dài DB và DC; c Chứng minh rằng AB2 = BH .HC d Vẽ đường thẳng vuông góc với AC tại C cắt đường phân giác AD tại E.. Chứng minh tam giác ABD đồng dạng tam giác ECD Câu 51,5 điểm [r]

Trang 1

TIẾT 1: PHƯƠNG TRÌNH BẬC NHẤT 1 ẨN- PHƯƠNG

TRÌNH TÍCH

A LÝ THUYẾT

I Phương trình bậc nhất một ẩn:

1 Định nghĩa:

Phương trình bậc nhất một ẩn là phương trình có dạng ax + b = 0 , với a và b là hai số đã cho và a 0 , Ví dụ : 2x – 1 = 0 (a = 2; b = - 1)

2.Cách giải phương trình bậc nhất một ẩn:

Bước 1: Chuyển hạng tử tự do về vế phải.

Bước 2: Chia hai vế cho hệ số của ẩn

II Phương trình đưa về phương trình bậc nhất một ẩn

Cách giải:

Bước 1 : Quy đồng - khử mẫu hai vế hoặc bỏ dấu ngoặc( chú ý trước ngoặc cĩ dấu trừ thì đổi

dấu tất cả các hạng tử trong ngoặc)

Bước 3:Chuyển vế: Chuyển các hạng tử chứa ẩn về một vế ; các hạng tử tự do sang vế kia Bước4: Thu gọn bằng cách cộng trừ các hạng tử đồng dạng

Bước 5: Chia hai vế cho hệ số của ẩn

.III Phương trình tích:

1) Phương trình tích: Có dạng: A(x).B(x)C(x).D(x) = 0

2) Cách giải A(x).B(x)C(x).D(x) = 0

( ) 0 ( ) 0 ( ) 0 ( ) 0

A x

B x

C x

D x

Giải từng phương trình và kết luận về nghiệm của phương trình đã cho

B BÀI TẬP

Bài 1 Giải các phương trình

a 3x - 2 = 2x – 3

b 2x +3 = 5x + 9

c 5 - 2x = 7

d 10x + 3 - 5x = 4x +12

e 11x + 42 - 2x = 100 - 9x -22

f 2x – (3 - 5x) = 4(x + 3)

g x ( x + 2 ) = x ( x + 3 )

h 2( x – 3 ) + 5x ( x – 1 ) = 5x2

Bài 2 Giải các phương trình

a/ 3 x +22

3 x+1

6 =

5

5 1 8 3

x   

b/ 4 x +35

6 x − 2

7 =

5 x +4

2 1

x x x

x

Bài 3 Giải các phương trình sau:

a) 2x(x – 3) + 5(x – 3) = 0 d) x2 – 5x + 6 = 0

b) (x2 – 4) – (x – 2)(3 – 2x) = 0 e) 2x3 + 6x2 = x2 + 3x

c) (2x + 5)2 = (x + 2)2 f) (2x +1)( 3 – x)(4- 2x)=0

Trang 2

TIẾT 2: PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU

C¸ch gi¶i:

Bước1 :Tìm ĐKXĐ của phương trình

Bước 2:Quy đồng mẫu(

T NTP MTC ) rồi khử mẫu hai vế ( =>)

Bước 3: Giải phương trình

Bước 4: kết luận(Đối chiếu ĐKXĐ để trả lời)

BÀI T ẬP :

B ài 1: a)

x 1 x 1

  b)

2 (2 3) 2 2 ( 1)( 3)

x  x  xx

c/

x 3  x-1 d)

3

x

 

  e)

x x

 g)

1 3

x x

 h) 2

x

x x

 

Bài 2 ( 1)(2 )

15 2

5 1 x

1

)

x x

x

a

x x x

x x

x x x

   d)

3 3 20 1 13 102

e) 2

5

x x

   f) 2

x x

x x x

TIẾT 3: GIẢI BÀI TỐN BẰNG CÁCH LẬP PHƯƠNG TRÌNH

Bước 1: Lập phương trình:

Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số.

Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết.

Lập phương trình biểu thị mối quan hệ giữa các đại lượng.

Bước 2: Giải phương trình.

Bước 3: Trả lời: Kiểm tra xem trong các nghiệm của phương trình(bpt), nghiệm

nào thỏa mãn điều kiện của ẩn, nghiệm nào khơng thỏa, rồi kết luận

Chú ý:

Số cĩ hai, chữ số được ký hiệu là ab

Giá trị của số đĩ là: ab= 10a + b; (Đk: 1  a  9 và 0  b  9, a, b  N)

Số cĩ ba, chữ số được ký hiệu là abc

abc= 100a + 10b + c, (Đk: 1  a  9 và 0  b  9, 0  c  9; a, b, c  N)

Trang 3

Tốn chuyển động: Quãng đường = Vận tốc Thời gian (Hay S = v t)

Khi xuơi dịng: Vận tốc thực = Vận tốc canơ + Vận tốc dịng nước.

Khi ngược dịng: Vận tốc thực = Vận tốc canơ - Vận tốc dịng nước.

Vận tốc xuơi = vận tốc ngược + 2 vận tốc nước

BÀI TẬP:

Bài 1: Mẫu số của một phân số lớn hơn tử số của nó là 5 Nếu tăng cả tử mà mẫu của nó

thêm 5 đơn vị thì được phân số mới bằng phân số

2

3.Tìm phân số ban đầu

Bài 2 :Năm nay , tuổi bố gấp 4 lần tuổi Hoàng Nếu 5 năm nữa thì tuổi bố gấp 3 lần tuổi

Hoàng ,Hỏi năm nay Hoàng bao nhiêu tuổi ?

Bài 3: Một người đi xe máy từ A đến B với vận tốc 25km/h.Lúc về người đĩ đi với vận tốc

30km/h nên thời gian về ít hơn thời gian đi là 20 phút.Tính quãng đường AB?

Bài 4: Một ca-no xuơi dịng từ A đến B hết 1h 20 phút và ngược dịng hết 2h Biết vận tốc dịng

nước là 3km/h Tính vận tốc riêng của ca-no?

Bài 5: Lúc 7h một người đi xe máy từ A đến B với vận tốc 40km/h ,đến 8h30 cùng ngày một

người khác đi xe máy từ B đến A với vận tốc 60km/h Hỏi hai người gặp nhau lúc mấy giờ biết quãng đường AB dài 210 km

Bài 6 : Một ca nơ xuơi từ bến A đến bến B với vận tốc 30 km/h , sau đĩ lại ngựơc từ B trở về

A Thời gian xuơi ít hơn thời gian đi ngược 1 giờ 20 phút Tính khoảng cách giữa hai bến A và

B biết rằng vận tốc dịng nước là 5 km/h

Bài 7: Lúc 7 giờ sáng, một người đi xe đạp khởi hành từ A với vận tốc 10km/h Sau đĩ lúc 8

giờ 40 phút, một người khác đi xe máy từ A đuổi theo với vận tốc 30km/h Hỏi hai người gặp nhau lúc mấy giờ

Bài 8: Một số tự nhiên cĩ 2 chữ số Chữ số hàng đơn vị gấp 2 lần chữ số hàng chục nếu thêm

chữ số 1 xen vào giữa 2 chữ số ấy thì được 1 số mới lớn hơn số ban đầu là 370.Tìm số ban đầu

TIẾT 4: BẤT PHƯƠNG TRÌNH BẬC NHẤT 1 ẨN

A.LÝ THUYẾT

1) Bất phương trình dạng ax + b < 0 (hoặc ax + b > 0, ax + b  0, ax + b 0) với a và b là hai số đã cho và a 0 , được gọi làbất phương trình bậc nhất một ẩn

2) Cách giải bất phương trình bậc nhất một ẩn :

Tương tự như cách giải phương trình đưa về bậc nhất rồi biểu diễn tập nghiệm trên trục số 3) Chú ý :

Khi chuyển vế hạng tử thì phải đổi dấu số hạng đó

Khi chia cả hai về của bất phương trình cho số âm phải đổi chiều bất phương trình

B

.BÀI T ẬP

Bài 1: Giải các phương trình sau

Trang 4

a) 2x  1 5 b) x 2x1 c) 3x  x 8

d) 2x 5  x 1 e) x4 2x 5

Bài 2 Giải các bất phương trình sau rồi biểu diễn tập nghiệm trên trục số:

a) (x – 3)2 < x2 – 5x + 4 f) x2 – 4x + 3  0

b) (x – 3)(x + 3)  (x + 2)2 + 3 g) x3 – 2x2 + 3x – 6 < 0

5

7 3

5 -4x

5

2 x

h

4

1 4 3

5 3 3 2

1 2x

)     xx

3 -x

2 x )  

i

5 2

3 2 4

1 2 5

3 -5x

)  x   x

3 -x

1 -x

k

Bài 3 a) Tìm x sao cho giá trị của biểu thức

3 2 4

x 

không nhỏ hơn giá trị của biểu thức

3 3 6

x 

b) Tìm x sao cho giá trị của biểu thức (x + 1)2 nhỏ hơn giá trị của biểu thức (x – 1)2

c)Tìm x sao cho giá trị của biểu thức

3 2 4

x 

không lớn hơn giá trị của biểu thức

3 3 6

x 

TIẾT 5,6: TAM GIÁC ĐỒNG DẠNG

A.LÝ THUYẾT

1, Phát biểu, vẽ hình, ghi giả thiết và kết luận của định lí Ta-let, định lí Ta-let đảo, hệ quả của định lí Ta-let

2, Phát biểu , vẽ hình, ghi giả thiết và kết luận của định lí tính chất đường phân giác trong của một tam giác

3, Phát biểu, vẽ hình, ghi giả thiết và kết luận các định lý về 3 trường hợp đồng dạng của hai tam giác

4, Phát biểu định lý về tỉ số hai đường cao, tỉ số hai diện tích của hai tam giác đồng

B.BÀI TẬP

Bài 1: Cho tam giác vuông ABC ( Â = 900) có AB = 9cm,AC = 12cm.Tia phân giác góc A cắt

BC tại D Từ D kẻ DE vuông góc với AC (E thuộc AC)

a) Tính độ dài các đoạn thẳng BD,CD và DE

b) Tính diện tích các tam giác ABD và ACD

Bài 2: Cho hình thang ABCD(AB //CD) Biết AB = 2,5cm; AD = 3,5cm; BD = 5cm; và góc

DAB = DBC

a) Chứng minh hai tam giác ADB và BCD đồng dạng

b) Tính độ dài các cạnh BC và CD

Bài 3

Cho tam giác ABC vuông tai A, AB =15 cm; AC = 20 cm Kẻ đường cao AH

a/ Chứng minh : ABC HBA từ đó suy ra : AB2 = BC BH

b/ Tính BH và CH

Bài 4

Trang 5

Cho tam giác ABC vuông tai A, đường cao AH ,biết AB = 15 cm, AH = 12cm

a/ CM : AHB CHA

b/ Tính các đoạn BH, CH , AC

Bài 5 : Cho hình bình hành ABCD , trên tia đối của tia DA lấy DM = AB, trên tia đối của tia

BA lấy

BN = AD Chứng minh :

a)  CBN và  CDM cân

b)  CBN  MDC

c) Chứng minh M, C, N thẳng hàng

Bài 6 : Cho tam giác ABC (AB < AC), hai đường cao BE và CF gặp nhau tại H, các đường

thẳng kẻ từ B song song với CF và từ C song song với BE gặp nhau tại D Chứng minh

a)  ABE  ACF

b) AE CB = AB EF

c) Gọi I là trung điểm của BC Chứng minh H, I, D thẳng hàng

Bài 7: Cho tam giác ABC có các góc đều nhọn Các đường cao AD, BE, CF cắt nhau ở H.

a) CMR : AE AC = AF AB

b) CMR ΔAFE ΔACB

c) CMR: ΔFHE ΔBHC

d ) CMR : BF BA + CE CA = BC2

Bài 8 : Cho hình thang cân MNPQ (MN // PQ, MN < PQ), NP = 15 cm, đường cao NI = 12 cm,

QI = 16 cm

a) Tính độ dài IP, MN

b) Chứng minh rằng : QN  NP

c) Tính diện tích hình thang MNPQ

d) Gọi E là trung điểm của PQ Đường thẳng vuông góc với EN tại N cắt đường thẳng

PQ tại K Chứng minh rằng : KN 2 = KP KQ

Bài 9 : Cho hình bình hành ABCD , trên tia đối của tia DA lấy DM = AB, trên tia đối của tia

BA lấy BN = AD Chứng minh :

d)  CBN và  CDM cân

e)  CBN  MDC

f) Chứng minh M, C, N thẳng hàng

Bài 10 : Cho tam giác ABC (AB < AC), hai đường cao BE và CF gặp nhau tại H, các đường

thẳng kẻ từ B song song với CF và từ C song song với BE gặp nhau tại D Chứng minh

a)  ABE  ACF

b) AE CB = AB EF

c) Gọi I là trung điểm của BC Chứng minh H, I, D thẳng hàng

Bài 11: Cho tam giác ABC có các góc đều nhọn Các đường cao AD, BE, CF cắt nhau ở H.

a) CMR : AE AC = AF AB

b) CMR ΔAFE ΔACB

c) CMR: ΔFHE ΔBHC

d ) CMR : BF BA + CE CA = BC2

Bài 12 : Cho tam giác ABC cân tại A và M là trung điểm của BC Lấy các điểm D,E theo thứ tự

thuộc các cạnh AB, AC sao cho góc DME bằng góc B

a)Chứng minh Δ BDM đồng dạng với Δ CME

b)Chứng minh BD.CE không đổi

c) Chứng minh DM là phân giác của góc BDE

Trang 6

MỘT SỐ ĐỀ THAM KHẢO

ĐỀ 1

A Lý Thuyết : ( 3 điểm)

1) Nêu cách giải phương trình chứa ẩn ở mẫu:

Áp dụng : Giải phương trình :

2

2) Phát biểu và viết công thức tính diện tích xung quanh của hình lăng trụ đứng

B Bài tập : ( 7 điểm )

Câu 1: ( 1 điểm )Giải phương trình sau:

Câu 2: ( 2điểm ) Giải các bất phương trình sau:

a) 3.(2x-3)  4.(2- x) +13

b)

Câu 3 : ( 2,5 điểm ):Cho tam giác ABC vuông tại A , có AB = 6cm ; AC = 8cm Vẽ đường

cao AH (HBC)

a) Tính độ dài cạnh BC

b) Chứng minh tam giác HBA đồng dạng với tam giác ABC

c) Vẽ phân giác AD của góc A ((DBC) Chứng minh rằng điểm H nằm giữa hai điểm B

và D

Câu 4: ( 1,5 điểm )Một hình chữ nhật có các kích thước là 3cm và 4cm là đáy của một hình

lăng trụ đứng Biết thể tích hình lăng trụ đứng này là 48cm3 Tính chiều cao của hình lăng trụ đứng đó

ĐỀ 2

Câu 1: ( 2 điểm )

Cho Phương trình :

1

a) Tìm điều kiện xác định của phương trình trên

b) Giải phương trình trên

Câu 2: ( 2 điểm )

a)Biểu diễn tập nghiệm của mỗi bất phương trình sau trên trục số :

x -3 ; x <

3 2 b) Cho a > b ; chứng tỏ -4a +2 < - 4b +2

Câu 3: Lúc 6 giờ sáng một ca nô xuôi dòng từ bến A đến bến B , rồi ngay lập tức từ bến B trở

về đến bến A lúc 12 giờ cùng ngày Tính khoảng cách từ bến A đến bến B , biết ca nô đến bến

B lúc 8 giờ và vận tốc dòng nước là 4km /h

Câu 4: ( 3,5 điểm) Cho tam giác ABC vuông tại A , có AB = 6cm ;

AC 8cm , BC =10cm Đường cao AH (HBC);

a) Chỉ ra các cặp tam giác đồng dạng ,

Trang 7

b) Cho AD là đường phân giác của tam giác ABC (DBC) Tính độ dài DB và DC;

c) Chứng minh rằng AB2 = BH HC

d) Vẽ đường thẳng vuông góc với AC tại C cắt đường phân giác AD tại E Chứng minh tam giác ABD đồng dạng tam giác ECD

Câu 5(1,5 điểm ) Cho hình hộp chữ nhật ABCDA’B’C’D’

a) Viết công thức tính thể tích hình hộp chữ nhật ;

b) Tính tính thể tích hình hộp chữ nhật ABCDA’B’C’D’, với AB = 5cm ; AA’= 10cm; D’A’= 4cm

ĐỀ 3:

Câu 1 ( 2 điểm ) Cho phương trình :

x   x  (1)

a) Tìm điều kiện xác định của phương trình (1)

b) Giải phương trình (1)

Câu 2 ( 2 điểm )

Biểu diễn tập nghiệm của mỗi bất phương trình sau trên trục số :

a) x  2 ; b) x   3

Câu 3 ( 3 điểm ) Giải phương trình và bất phương trình sau :

a) x + 3+ 2x –1= x – 4

b) 2.( 3x- 1 ) + 5 x +1

c)

Câu 4 ( 3 điểm )Cho tam giác ABC vuông tại A , có AB = 3cm ; AC = 4cm Vẽ đường cao AH

(HBC)

a) Tính độ dài BC

b) Chứng minh tam giác HBA đồng dạng với tam giác HAC

c) Chứng minh HA2  HB HC

d) Kẻ đường phân giác AD (D BC ) tính các độ dài DB và DC ?

ĐỀ 4:

A LÝ THUYẾT: HS chọn 1 trong 2 đề sau: (2 đ)

Đề 1: Nêu 2 quy tắc biến đổi phương trình

Áp dụng : giải phương trình:

a) x – 5 = 8 b) 3 1

x



Đề 2: Nêu hệ quả định lí talet

Cho ABC, MN // BC ( MAB N, AC) , AM =2 ; AB = 3 ; BC =6 Tính MN

B BÀI TẬP (8 đ)

Bài 1: (3 đ): Giải các phương trình sau:

a) 2x + 4 =0 b)

2 5

3 5

x x

 c) x2 2x5 Bài 2( 1đ): Giải bất phương trình và biểu diễn tập nghiệm lên trục số

2x – 1 < x-2

Trang 8

Bài 3(1.5đ) :Một người đi bộ từ A đến B với vận tốc 8 km/h Lúc về người đó đi với vận tốc 10km/h nên thời gian về ít hơn thời gian đi là 30 phút Tính quãng đường AB

Bài 4 ( 2.5đ): Cho tam giác ABC vuông tại A , biết AB =3 cm, AC = 4cm Vẽ đường cao

AH, đường phân giác AD

a) Chứng minh rằng tam giác ABC đồng dạng với tam giác HBA

b) Tính độ dài BD, CD

ĐỀ 5:

A LÝ THUYẾT: HS chọn 1 trong 2 đề sau: (2 đ)

Đề 1:a) Phát biểu định lí 2 tam giác đồng dạng trường hợp c-g-c?

b) Cho tam giác MNP và tam giác HIK có M H và MN = HI Vậy để tam giác MNP đồng dạng với tam giác HIKthì cần phải có: ………=…………

Đề 2: a)Phát biểu định nghĩa phương trình bậc nhất 1 ẩn?

b) Hãy chỉ ra đâu là phương trình bậc nhất 1 ẩn trong số các phương trình sau bằng cách khoanh tròn vào chữ cái đứng trước những đáp án đúng:

A -2x + 5 =0 B 3xy – 4 = 0 C

2 7

2x4 x D x2 + 2x – 1 =0

B BÀI TẬP (8 đ)

Bài 1: (2 đ): Giải các phương trình sau:

a) - 4x + 8 =0 b)

2 1

x x

x x

 Bài 2( 1,5đ): Giải bất phương trình và biểu diễn tập nghiệm lên trục số: 2x – 6 < 4

Bài 3(2 đ) :Một người đi xe máy từ A đến B với vận tốc 30 km/h.Đến B người đó làm việc trong 1 h rồi quay về A với vận tốc 24km/h Biết thời gian tổng cộng hết 5h 30’ Tính quãng đường AB

Bài 4 ( 2.5đ): Cho hình thang ABCD(AB // CD) có DAB DBC  và AD = 3cm, AD = 5 cm, BC= 4 cm

a)Chứng minh tam giác DAB đồng dạng với tam giác CBD

b) Từ câu a tính độ dài DB, DC

c)Tính diện tích hình thang ABCD, biết diện tích tam giác ABD bằng 5 cm2

Ngày đăng: 09/06/2021, 23:28

TỪ KHÓA LIÊN QUAN

w