1. Trang chủ
  2. » Luận Văn - Báo Cáo

Bài 4: Mô hình Logit và Probit

27 20 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 27
Dung lượng 0,96 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Dinh & Kleimeier (2007) A Credit Scoring Model for Vietnam’s Retail Banking Market. International Review of Financial[r]

Trang 1

LOGIT AND PROBIT

MODEL

Trang 2

OLS AND RELATIONSHIP BETWEEN VARIABLES

 When increases by 1 unit, increases by units

y     x  

y

x

Trang 3

BINARY DEPENDENT VARIABLE

3

Sometimes the dep var under consideration is

binary:

Trang 4

OLS WITH BINARY DEP VAR:

THE LINEAR PROBABILITY MODEL

4

then the model is called Linear Probability Model (LPM)

y

Trang 5

Example: probability of default

5

 Problem: how individual and loan characteristics affect the probability of loan default

 Data: 1.810 customers (borrowers) of a bank in VN

 Dep var: default (= 1 if there is one time (or more)

during the loan duration, the borrower is unable to

repay the installment within 90 days after due date,

otherwise 0)

 Dep vars:

 Income ( income )

 Ratio of collateral/loan amount ( coltoloan )

 Data file: default.dta

Trang 7

sort default

Trang 9

LINEAR PROBABILITY MODEL

9

_cons 2595005 .0163538 15.87 0.000 2274262 .2915748 coltoloan -.0075866 .0040737 -1.86 0.063 -.0155763 000403 income -.0011562 .0004898 -2.36 0.018 -.0021167 -.0001956 default Coef Std Err t P>|t| [95% Conf Interval]

Total 308.798343 1809 170701129 Root MSE = 41224 Adj R-squared = 0.0044 Residual 307.089262 1807 169944251 R-squared = 0.0055 Model 1.70908036 2 854540178 Prob > F = 0.0066 F( 2, 1807) = 5.03 Source SS df MS Number of obs = 1810 reg default income coltoloan

Trang 10

LINEAR PROBABILITY MODEL

Trang 11

DISADVANTAGES OF LPM

11

regardless the initial value of

distributed

has unequal variance, resulting in

unreliability of hypothesis testing

 1 

X X

 1 

Trang 12

THE LOGIT MODEL

 The probability of default is then:

 If this probability is symmetric, then :

i i

i X u

I *   

) (

) 0 (

) 0 (

) 1 ( Y i P I i * P X i u i P u i X i

) (

) 1

Trang 13

THE LOGIT MODEL

i X u

i

Z i

Trang 14

THE LOGIT MODEL

14

 The odd ratio in this case is the ratio between

probability of default and probability of non-default:

Taking log of both sides, we otain the logit:

LPM assumes P i linearly correlates with X i , the Logit

model assumes the logit linearly correlates with X i

i i

i

Z Z

i i

optional

Trang 15

PROPERTIES OF LOGIT MODEL

Trang 16

Z   

Trang 17

ESTIMATE LOGIT MODEL IN STATA

17

_cons -1.019157 .097014 -10.51 0.000 -1.209301 -.8290129 coltoloan -.0547242 .0307794 -1.78 0.075 -.1150508 .0056024 income -.0071093 .003187 -2.23 0.026 -.0133557 -.0008628 default Coef Std Err z P>|z| [95% Conf Interval]

Log likelihood = -944.24413 Pseudo R2 = 0.0057 Prob > chi2 = 0.0045

LR chi2(2) = 10.79Logistic regression Number of obs = 1810

Iteration 3: log likelihood = -944.24413

Iteration 2: log likelihood = -944.24414

Iteration 1: log likelihood = -944.28455

Iteration 0: log likelihood = -949.63676

logit default income coltoloan

Trang 18

INTERPRETATION OF COEFFICIENT

18

 Coefficient 

 Coefficient  only indicates the direction of the effect

of on It says nothing about the magnitude of the effect

i i

i

Z i

Z   

Trang 19

MARGINAL EFFECTS

19

then how much changes (marginal effect)

varies with

X P

Trang 20

MARGINAL EFFECTS IN STATA

20

coltol~n -.0092774 .0052 -1.78 0.075 -.019476 000921 1.76776 income -.0012052 00054 -2.24 0.025 -.002261 -.000149 24.094 variable dy/dx Std Err z P>|z| [ 95% C.I ] X = 21632929

y = Pr(default) (predict)

Marginal effects after logit

mfx

coltol~n -.0091914 .0055 -1.67 0.095 -.019971 001588 0 income -.0011941 00049 -2.42 0.015 -.002161 -.000228 40 variable dy/dx Std Err z P>|z| [ 95% C.I ] X = .2135719

y = Pr(default) (predict)

Marginal effects after logit

mfx, at(income = 40 coltoloan = 0)

Marginal effects at mean of X

Marginal effects at income

of 40 mil VND and no collateral

Trang 21

HYPOTHESIS TESTING

21

default simultaneously

Prob > chi2 = 0.0257 chi2( 1) = 4.98 ( 1) [default]income = 0

test income

Prob > chi2 = 0.0067 chi2( 2) = 10.02

( 2) [default]coltoloan = 0 ( 1) [default]income = 0 test income coltoloan

Trang 22

THE PROBIT MODEL

22

In the Logit model, u follows logistic distribution

In the Probit model, u follows normal distribution

Trang 23

PROBIT MODEL IN STATA

23

_cons -.6222283 .0573382 -10.85 0.000 -.7346092 -.5098474 coltoloan -.0339395 .0179847 -1.89 0.059 -.0691889 .0013098 income -.0042379 .0018321 -2.31 0.021 -.0078288 -.0006471 default Coef Std Err z P>|z| [95% Conf Interval]

Log likelihood = -943.93571 Pseudo R2 = 0.0060 Prob > chi2 = 0.0033

LR chi2(2) = 11.40Probit regression Number of obs = 1810

Iteration 3: log likelihood = -943.93571

Iteration 2: log likelihood = -943.93572

Iteration 1: log likelihood = -943.96949

Iteration 0: log likelihood = -949.63676

probit default income coltoloan

Trang 24

LOGIT OR PROBIT

24

compared to the Probit model

two models

computing the marginal effects

Trang 25

APPLICATION OF LOGIT/PROBIT

25

Dinh & Kleimeier (2007) A Credit Scoring Model for Vietnam’s

Retail Banking Market International Review of Financial

Analysis 16: 471-95

case presented in this lecture

Trang 26

APPLICATION OF LOGIT/PROBIT

26

Dymski & Mohanty (1999) Credit and Banking Structure: Asian

and African-American Experience in LA American Economic

Review 89(2): 362-6

purchasing loan application

purchasing loan) is approved (1) or not (0)

income, accommodation, distance to bank

Trang 27

APPLICATION OF LOGIT/PROBIT

27

Fernandez-Perez et al (2014) The Term Structure of Interest

Rates as a Predictor of Stock Returns: Evidence for the IBEX35

during a Bear Market International Review of Economics and

Finance 31: 21-33

market)

and financial indicators

Ngày đăng: 08/04/2021, 18:52

TỪ KHÓA LIÊN QUAN

w