1. Trang chủ
  2. » Giáo án - Bài giảng

Bài soạn DE+DAP AN THI THU 2011

3 303 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề thi khảo sát đại học khối 12
Trường học Trường THPT Minh Châu
Chuyên ngành Toán
Thể loại Đề thi khảo sát
Năm xuất bản 2011
Thành phố Hưng Yên
Định dạng
Số trang 3
Dung lượng 160 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

S GD & T Hng Yờn Trng THPT Minh Chõu THI KHO ST I HC KHI 12 Mụn thi: Toỏn (Thi gian lm bi: 180 phỳt) phần chung cho tất cả các thí sinh Cõu I (2.0 im) Cho hm s 4 2 2 1y x mx m= + (1) , vi m l tham s thc. 1.Kho sỏt s bin thiờn v v th hm s (1) khi 1m = . 2.Xỏc nh m hm s (1) cú ba im cc tr, ng thi cỏc im cc tr ca th to thnh mt tam giỏc cú bỏn kớnh ng trũn ngoi tip bng 1 . Cõu II :( 2, 0 im) Gii cỏc phng trỡnh:1. 3 3 4sin x.c 3x 4cos x.sin 3x 3 3c 4x 3os os + + = 2. 2 2 3 3 3 log (x 5x 6) log (x 9x 20) 1 log 8 + + + + + = + Cõu III (1.0 im)Tớnh tớch phõn sau: 2 2 2 0 cos .cos 2 .I x x dx = CõuVI:( 1,0 im) Cho hỡnh chúp S.ABCD cú ỏy ABCD l hỡnh thoi ; hai ng chộo AC = 2 3a , BD = 2a v ct nhau ti O; hai mt phng (SAC) v (SBD) cựng vuụng gúc vi mt phng (ABCD). Bit khong cỏch t im O n mt phng (SAB) bng 3 4 a , tớnh th tớch khi chúp S.ABCD theo a. CõuV :( 2, 0 im). Cho 3 s dng x, y, z tho món : x +3y+5z 3 .Chng minh rng: 46253 4 +zxy + 415 4 +xyz + 4815 4 +yzx 45 5 xyz. II. PHN RIấNG ( 3,0 im ) Thớ sinh ch c lm mt trong hai phn (phn A hoc phn B). A. Theo chng trỡnh Chun : Câu VI.a (2 điểm) 1. Trong mặt phẳng với hệ trục tọa độ Oxy cho parabol (P): xxy 2 2 = và elip (E): 1 9 2 2 =+ y x . Chứng minh rằng (P) giao (E) tại 4 điểm phân biệt cùng nằm trên một đờng tròn. Viết phơng trình đờng tròn đi qua 4 điểm đó. 2. Trong không gian với hệ trục tọa độ Oxyz cho mặt cầu (S) có phơng trình 011642 222 =+++ zyxzyx và mặt phẳng ( ) có phơng trình 2x + 2y z + 17 = 0. Viết phơng trình mặt phẳng ( ) song song với ( ) và cắt (S) theo giao tuyến là đờng tròn có chu vi bằng 6. Câu VII.a(1điểm) Tìm hệ số của số hạng chứa x2 trong khai triển nhị thức Niutơn của 4 1 2 n x x + ữ , biết rằng n là số nguyên dơng thỏa mãn: 2 3 1 0 1 2 2 2 2 6560 2 2 3 1 1 n n n n n n C C C C n n + + + + + = + + L Cõu VIb :(2,0 im) Trong mt phng (Oxy), cho ng trũn (C ): 2 2 2x 2y 7x 2 0+ = v hai im A(-2; 0), B(4; 3). Vit phng trỡnh cỏc tip tuyn ca (C ) ti cỏc giao im ca (C ) vi ng thng AB. 2. Trong không gian với hệ trục tọa độ Oxyz cho tam giác ABC với A(1; 2; 5), B(1; 4; 3), C(5; 2; 1) và mặt phẳng (P): x y z 3 = 0. Gọi M là một điểm thay đổi trên mặt phẳng (P). Tìm giá trị nhỏ nhất của biểu thức 222 MCMBMA ++ Cõu VIIb :(1,0 im) Cho khai trin ( ) x 1 3 x 1 2 2 8 1 log 3 1 log 9 7 5 2 2 + + + ữ . Hóy tỡm cỏc giỏ tr ca x bit rng s hng th 6 trong khai trin ny l 224 ----------------***HT***---------------- Chỳ ý:Thớ sinh khụng c s dng ti liu. Cỏn b coi thi khụng gii thớch gỡ thờm H v tờn thớ sinh:. . . . . . . . . . . . . . . . . . . . . . . . . S bỏo danh:. . . . . . . . . . VIa.1 Viết phơng trình đờng tròn đi qua giao điểm của(E) và (P) 1,00 Hoành độ giao điểm của (E) và (P) là nghiệm của phơng trình 09x37x36x91)x2x( 9 x 23422 2 =+=+ (*) 0,25 Xét 9x37x36x9)x(f 234 += , f(x) liên tục trên R có f(-1)f(0) < 0, f(0)f(1) < 0, f(1)f(2) < 0, f(2)f(3) < 0 suy ra (*) có 4 nghiệm phân biệt, do đó (E) cắt (P) tại 4 điểm phân biệt 0,25 Toạ độ các giao điểm của (E) và (P) thỏa mãn hệ =+ = 1y 9 x x2xy 2 2 2 0,25 09y8x16y9x9 9y9x y8x16x8 22 22 2 =+ =+ = (**) (**) là phơng trình của đờng tròn có tâm = 9 4 ; 9 8 I , bán kính R = 9 161 Do đó 4 giao điểm của (E) và (P) cùng nằm trên đờng tròn có phơng trình (**) 0,25 VIa.2 Viết phơng trình mặt phẳng ( ) 1,00 Do () // () nên () có phơng trình 2x + 2y z + D = 0 (D 17) Mặt cầu (S) có tâm I(1; -2; 3), bán kính R = 5 Đờng tròn có chu vi 6 nên có bán kính r = 3. 0,25 Khoảng cách từ I tới () là h = 435rR 2222 == 0,25 Do đó = = =+= ++ ++ (loại) 17D 7D 12D54 )1(22 D3)2(21.2 222 0,25 Vậy () có phơng trình 2x + 2y z - 7 = 0 0,25 VII.a Tìm hệ số của x 2 . 1,00 Ta có ( ) ++++=+= 2 0 nn n 22 n 1 n 0 n 2 0 n dxxCxCxCCdx)x1(I 2 0 1nn n 32 n 21 n 0 n xC 1n 1 xC 3 1 xC 2 1 xC + ++++= + suy ra I n n 1n 2 n 3 1 n 2 0 n C 1n 2 C 3 2 C 2 2 C2 + ++++= + (1) 0,25 Mặt khác 1n 13 )x1( 1n 1 I 1n 2 0 1n + =+ + = + + (2) Từ (1) và (2) ta có n n 1n 2 n 3 1 n 2 0 n C 1n 2 C 3 2 C 2 2 C2 + ++++= + 1n 13 1n + = + Theo bài ra thì 7n65613 1n 6560 1n 13 1n 1n == + = + + + 0,25 Ta có khai triển ( ) = = + 7 0 4 k314 k 7 k k 7 0 4 k7 k 7 7 4 xC 2 1 x2 1 xC x2 1 x 0,25 Số hạng chứa x 2 ứng với k thỏa mãn 2k2 4 k314 == Vậy hệ số cần tìm là 4 21 C 2 1 2 7 2 = 0,25 VIb.2 Tìm giá trị nhỏ nhất . 1,00 Gọi G là trọng tâm của tam giác ABC, suy ra G = 3; 3 8 ; 3 7 Ta có ( ) ( ) ( ) 222 222 GCMGGBMGGAMGMCMBMAF +++++=++= 22222222 GCGBGAMG3)GCGBGA(MG2GCGBGAMG3 +++=++++++= 0,25 F nhỏ nhất MG 2 nhỏ nhất M là hình chiếu của G lên (P) 0,25 33 19 111 333/83/7 ))P(,G(dMG = ++ == 0,25 3 64 9 104 9 32 9 56 GCGBGA 222 =++=++ Vậy F nhỏ nhất bằng 9 553 3 64 33 19 .3 2 =+ khi M là hình chiếu của G lên (P) 0,25 . S GD & T Hng Yờn Trng THPT Minh Chõu THI KHO ST I HC KHI 12 Mụn thi: Toỏn (Thi gian lm bi: 180 phỳt) phần chung cho tất cả các thí sinh. (1) , vi m l tham s thc. 1.Kho sỏt s bin thi n v v th hm s (1) khi 1m = . 2.Xỏc nh m hm s (1) cú ba im cc tr, ng thi cỏc im cc tr ca th to thnh mt tam

Ngày đăng: 27/11/2013, 04:11

HÌNH ẢNH LIÊN QUAN

 khi M là hình chiếu của G lên (P) 0,25 - Bài soạn DE+DAP AN THI THU 2011
khi M là hình chiếu của G lên (P) 0,25 (Trang 3)
w