Từ một điểm M ở ngoài đường tròn, kẻ hai tiếp tuyến MA,MB với đường tròn A,B là các tiếp điểm.. Chứng minh rằng: a Tứ giác MAOB nội tiếp được đường tròn... Đường thẳng vuông góc với BD
Trang 1ĐỀ 1 ĐỀ KIỂM TRA HỌC KỲ II Môn: Toán - L ớp 9
Th ời gian làm bài: 120 phút
I PHẦN TRẮC NGHIỆM (2,0 điểm)
Thí sinh g hi vào bài làm chỉ một chữ cái A, B, C hoặc D đứng trước câu trả lời đúng nhất
Câu 1 Giá trị của biểu thức (1 2)2 1 là:
Câu 2 Trong các phương trình bậc hai sau phương trình nào có tổng hai nghiệm bằng 5?
A x2 x10 50 B x2 x5 10 0 C x2 x5 10 D x2 x5 10
Câu 3 Cho (O;R)và dâyAB R 2 Khi đó độ dài cung nhỏ AB là:
A
2
R
2
2
R
Câu 4 Cho hình nón có bán kính bằng 3cm, chiều cao bằng 4cm diện tích xung quanh của hình nón đã cho
bằng:
A 24 cm2 B 12 cm2 C 20 cm2 D 15 cm2
II PHẦN TỰ LUẬN (8,0 điểm)
Câu 5 (1,5 điểm)
a) Rút gọn biểu thức: P 2( 82 3)2 6
b) Giải hệ phương trình: 2 3 1
x y
x y
Câu 6 (1,5 điểm) Cho hàm số y2mxm2 (1) (m là tham số)
a) Tìm giá trị của m để đồ thị hàm số (1) đi qua điểm A(1;1) Vẽ đồ thị hàm số trên với giá trị m
tìm được
b) Tìm các giá trị của m để đồ thị hàm số (1) song song với đường thẳng y(m2 3)x2m1
Câu 7 (1,5 điểm) Cho phương trình bậc hai ẩn x : x2 (2m1)xm2 m20 (1) (m là tham số)
a) Giải phương trình (1) khi m2
b) Tìm m để phương trình (1) có 2 nghiệm x1, x2 thoả mãn: x1(x1 2x2)x2(x2 3x1)9 c) Lập hệ thức liên hệ giữa sao cho chúng không phụ thuộc vào m
Câu 8 (2,5 điểm) Cho đường tròn (O;R) Từ một điểm M ở ngoài đường tròn, kẻ hai tiếp tuyến MA,MB
với đường tròn (A,B là các tiếp điểm) Qua A kẻ đường thẳng song song với MO cắt đường tròn tại E (
A
E ), đường thẳng ME cắt đường tròn tại F (F E), đường thẳng AF cắt MO tại N , H là giao điểm của MOvà AB Chứng minh rằng:
a) Tứ giác MAOB nội tiếp được đường tròn
b) MN2 NF.NA và HF AN
2
MF
EF HF
HB
Câu 9 (1,0 điểm) Cho các số a,b thỏa mãn:
1 2 3
1 1 3
3 2 2
3 2 2
a a b
b b
a
Tính giá trị của biểu thức 2 2
b a
M
- HẾT - Cán bộ coi thi không giải thích gì thêm!
Họ và tên học sinh:……… Số báo danh:……… Phòng thi:………
1; 2
x x
Trang 2I PHẦN TRẮC NGHIỆM (2,0 điểm)
Chọn câu trả lời đúng A, B, C hoặc D rồi ghi vào tờ giấy thi
Câu 1 Gọi S, P là tổng và tích các nghiệm của phương trình x2 + 8x - 7 =0 Khi đó S + P bằng?
Câu 2 Phương trình nào sau đây có hai nghiệm phân biệt?
A.x2 3 0 B.x23x 4 0 C.x22x 1 0 D.3x27x 2 0
Câu 3 Cho hàm số 2
ax
y (a ≠ 0) Câu nào sau đây là đúng?
A Hàm số đồng biến với a > 0 và x > 0; B Hàm số nghịch biến với a<0 và x< 0
C Hàm số nghịch biến với a > 0 và x > 0 D Hàm số đồng biến với a < 0 và x > 0
Câu 4 Thể tích của hình trụ có bán kính đáy bằng 3cm, chiều cao bằng 5cm là
A.30 ( cm3). B.45 ( cm3). C.54 ( cm3). D.75 ( cm3)
II PHẦN TỰ LUẬN (8,0 điểm)
Câu 5 (2,0 điểm)
a) Giải hệ phương trình: 3
x y
x y
b) Giải phương trình 2x25x 1 0
Câu 6 (2,0 điểm) Một công ty vận tải điều một số xe tải đến kho hàng để chở 21 tấn hàng
Khi đến kho hàng thì có 1 xe bị hỏng nên để chở hết lượng hàng đó, mỗi xe phải chở thêm 0,5 tấn so với dự định ban đầu Hỏi lúc đầu công ty đã điều đến kho hàng bao nhiêu xe Biết rằng khối lượng hàng chở ở mỗi xe là như nhau
Câu 7 (1,0 điểm) Cho phương trình 2
x m x m (x là ẩn, m là tham số)
Tìm tất cả các giá trị của m để phương trình đã cho có hai nghiệm và tổng lập phương của
hai nghi ệm đó bằng 27
Câu 8 ( 2,5 điểm) Cho đường tròn tâm O đường kính AB, trên cùng một nửa đường tròn
(O) lấy 2 điểm G và E (theo thứ tự A, G, E, B) sao cho tia EG cắt tia BA tại D Đường thẳng vuông góc với BD tại D cắt BE tại C, đường thẳng CA cắt đường tròn (O) tại điểm thứ hai
là F
a) Chứng minh tứ giác DFBC nội tiếp
b) Chứng minh: BF = BG
c) Chứng minh: .
DA DG DE
BA BE BC
Câu 9 (0,5 điểm) Cho phương trình 4 2 2
x x ax a .Tìm a để nghiệm của phương trình đó đạt giá trị nhỏ nhất
- Hết - (Cán bộ coi thi không giải thích gì thêm)
Trang 340°
A
S
ĐỀ 3 ĐỀ KIỂM TRA HỌC KỲ II Môn: Toán - L ớp 9
Th ời gian làm bài: 120 phút
I TR ẮC NGHIỆM (3,0 điểm) Chọn phương án trả lời đúng trong các câu sau:
Câu 1 Điều kiện để biểu thức M 1
1
x xác định là
Câu 2 Giá trị của biểu thức P 3 2 2 3 2 2 là
Câu 3 Cho tam giác ABC vuông tạiA, ABC 60 , cạnh AB 5 cm Độ dài cạnh AC là
A 10cm B 5 3
3
cm
Câu 4 Hình vuông cạnh bằng 2cm, bán kính đường tròn ngoại tiếp hình vuông là
A 1 cm B 2 cm
C 2 2cm D 2cm
Câu 5 Trong hình vẽ bên, biết góc ASC 40 , SA là tiếp tuyến
của đường tròn tâm O Góc ACS có số đo bằng
A.40 B 30
C.25 D 20
Câu 6 Số giá trị nguyên của m để hàm số y m2 – 9 x 3 nghịch biến là
II T Ự LUẬN (7,0 điểm)
Câu 7 (1,5 điểm) Cho biểu thức A 2 3 9
9
x
, với x 0;x 9 a) Rút gọn biểu thứcA
b) Tìm giá trị của x để 1
3
A
Câu 8 (1,5 điểm) Cho phương trình 2 2
x mx m m , với x là ẩn; m là tham số
a) Giải phương trình với m 2
b) Tìm m để phương trình có hai nghiệm x x1; 2 thỏa mãn 2 2
x x x x
Câu 9 (2,5 điểm) Cho tam giác ABC vuông tại A, đường cao AH H BC Đường tròn đường kính
AH cắt hai cạnh AB AC, theo thứ tự tại M và N
a) Chứng minh tứ giác AMHN là hình chữ nhật b) Chứng minh tứ giác BMNC là tứ giác nội tiếp c) Qua A kẻ đường thẳng vuông góc với MN cắt BC tại I Chứng minh rằng 12 2 4 2
Câu 10 (1,5 điểm)
a) Sở Giáo dục và Đào tạo Bắc Ninh dự định tổ chức hội nghị tại hội trường 500 chỗ ngồi của trường THPT Chuyên Bắc Ninh, hội trường được chia thành từng dãy ghế, mỗi dãy ghế có số chỗ ngồi như nhau
Vì có 567 người dự hội nghị nên ban tổ chức phải kê thêm 1 dãy ghế, đồng thời phải kê thêm 2 chỗ ngồi vào tất cả các dãy ghế thì vừa đủ số chỗ ngồi Hỏi lúc đầu hội trường có bao nhiêu dãy ghế và mỗi dãy ghế có bao nhiêu chỗ ngồi?
b) Cho x y, là các số thực dương thỏa mãn x y 2 Tìm giá trị lớn nhất của 3 3
A xy x y
Trang 420 đề đáp án Toán 6 AMSTERDAM=30k
22 đề-4 đáp án Toán 6 Marie Cuire Hà Nội=10k
28 DE ON VAO LOP 6 MÔN TOÁN=40k
13 đề đáp án vào 6 môn Toán=20k
20 đề đáp án KS đầu năm Toán 6,7,8,9=30k/1 khối; 100k/4 khối
15 ĐỀ ĐÁP ÁN KHẢO SÁT TOÁN 6,7,8,9 LẦN 1,2,3=30k/1 lần/1 khối; 100k/4 khối/1 lần
15 ĐỀ ĐÁP ÁN THI THỬ TOÁN 9 LẦN 1,2,3=30k/1 lần
20 ĐỀ ĐÁP ÁN KIỂM TRA HỌC KỲ I (II) TOÁN 6,7,8,9=30k/1 khối/1 kỳ; 100k/4 khối/1 kỳ
20 ĐỀ ĐÁP ÁN KIỂM TRA GIỮA HỌC KỲ I (II) TOÁN 6,7,8,9=30k/1 khối/1 kỳ; 100k/4 khối/1 kỳ
63 ĐỀ ĐÁP ÁN TOÁN VÀO 10 CÁC TỈNH 2017-2018; 2018-2019; 2019-2020=60k/1 bộ; 150k/3 bộ
33 ĐỀ ĐÁP ÁN CHUYÊN TOÁN VÀO 10 CÁC TỈNH 2019-2020=40k
GIÁO ÁN DẠY THÊM TOÁN 6,7,8,9 (40 buổi)=80k/1 khối; 300k/4 khối
Ôn hè Toán 5 lên 6=20k; Ôn hè Toán 6 lên 7=20k; Ôn hè Toán 7 lên 8=20k; Ôn hè Toán 8 lên 9=50k Chuyên đề học sinh giỏi Toán 6,7,8,9=100k/1 khối; 350k/4 khối
(Các chuyên đề được tách từ các đề thi HSG cấp huyện trở lên)
25 ĐỀ ĐÁP ÁN KHẢO SÁT GIÁO VIÊN MÔN TOÁN=50k
TẶNG:
5 đề đáp án Toán 6 Giảng Võ Hà Nội 2008-2012
300-đề-đáp án HSG-Toán-6; 225-đề-đáp án HSG-Toán-7
200-đề-đáp án HSG-Toán-8
100 đề đáp án HSG Toán 9
77 ĐỀ ĐÁP ÁN VÀO 10 CHUYÊN TOÁN 2019-2020
ĐÁP ÁN 50 BÀI TOÁN HÌNH HỌC 9
Cách thanh toán: Thanh toán qua tài khoản ngân hàng Nội dung chuyển khoản: tailieu + < số điện thoại >
Số T/K VietinBank: 101867967584; Chủ T/K: Nguyễn Thiên Hương
Cách nhận tài liệu: Tài liệu sẽ được gửi vào email của bạn hoặc qua Zalo 0946095198
ANH
CÓ SKKN CỦA TẤT CẢ CÁC MÔN CẤP 1-2
35 ĐỀ ĐÁP ÁN ANH VÀO 6 (2019-2020)=50k
20 đề đáp án KS đầu năm Anh 6,7,8,9=30k/1 khối; 100k/4 khối
15 ĐỀ ĐÁP ÁN KHẢO SÁT ANH 6,7,8,9 LẦN 1,2,3=30k/1 lần/1 khối; 100k/4 khối/1 lần
15 ĐỀ ĐÁP ÁN THI THỬ ANH 9 LẦN 1,2,3=30k/1 lần
20 ĐỀ ĐÁP ÁN KIỂM TRA HỌC KỲ I (II) ANH 6,7,8,9=30k/1 khối/1 kỳ; 100k/4 khối/1 kỳ
20 ĐỀ ĐÁP ÁN KIỂM TRA GIỮA HỌC KỲ I (II) ANH 6,7,8,9=30k/1 khối/1 kỳ; 100k/4 khối/1 kỳ
100 đề đáp án HSG môn Anh 6,7,8,9=60k/1 khối
30 ĐỀ ĐÁP ÁN ANH VÀO 10 CÁC TỈNH 2019-2020=40k
9 ĐỀ ĐÁP ÁN CHUYÊN ANH VÀO 10 CÁC TỈNH 2019-2020=20k
33 ĐỀ 11 ĐÁP ÁN GIÁO VIÊN GIỎI MÔN ANH=50k
TẶNG:
10 đề Tiếng Anh vào 6 Trần Đại Nghĩa; CẤU TRÚC TIẾNG ANH
Tài liệu ôn vào 10 môn Anh (Đủ dạng bài tập)
Cách thanh toán: Thanh toán qua tài khoản ngân hàng Nội dung chuyển khoản: tailieu + < số điện thoại >
Số T/K VietinBank: 101867967584; Chủ T/K: Nguyễn Thiên Hương
Cách nhận tài liệu: Tài liệu sẽ được gửi vào email của bạn hoặc qua Zalo 0946095198
HÓA
CÓ SKKN CỦA TẤT CẢ CÁC MÔN CẤP 1-2
20 CHUYÊN ĐỀ BỒI DƯỠNG HSG HÓA 9=60k
2019-2020 VÀO 10 CHUYÊN HÓA CÁC TỈNH=20k
CHUYÊN ĐỀ BỒI DƯỠNG HSG HÓA 8=40k
CÁC CHUYÊN ĐỀ HÓA THCS=100k
600 CÂU HỎI TRẮC NGHIỆM VẬT LÍ 9 CÓ ĐÁP ÁN=70k
Trang 5ĐỀ 4 ĐỀ KIỂM TRA HỌC KỲ II Môn: Toán - L ớp 9
Th ời gian làm bài: 120 phút
Phần I - Trắc nghiệm khách quan (2,0 điểm)
Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước phương án đó vào bài làm
Câu 1 Điều kiện để biểu thức 2019
1 x có nghĩa là
Câu 2 Trong mặt phẳng toạ độ Oxy, đường thẳng ya1x1 (d) đi qua điểm A 1;3 Hệ số góc của (d) là
Câu 3 Với giá trị nào của m thì hệ phương trình
3 0
y
A m1 B m 1 C m2 D m 2
Câu 4 Phương trình nào sau đây có tích hai nghiệm bằng 2?
A 2
2 0
x x B 2
2 0
x x C 2
2 1 0
x x D 2
5 2 0
x x
Câu 5 Trong mặt phẳng toạ độ Oxy, số giao điểm của parabol 2
yx và đường thẳng y x 3 là
Câu 6 Giá trị của m để hàm số ym1 x2 m1 luôn đồng biến với mọi giá trị của x0 là
A m1 B m1 C m 1 D m 1
Câu 7 Cho hai đường tròn O cm;3 và O';5cm, có OO' 7 cm Số điểm chung của hai đường tròn là
Câu 8 Trên đường tròn O R; lấy hai điểm A B, sao cho số đo cung AB lớn bằng 270 0 Độ dài dây cung AB là
Phần 2 - Tự luận (8,0 điểm)
Câu 1 (1,5 điểm)
4
x A
x
với x0;x4
a) Rút gọn biểu thức A
b) Chứng tỏ rằng A2
Câu 2 (1,5 điểm)
Cho phương trình 2
1 0
x mx m (m là tham số)
a) Giải phương trình với m3
b) Tìm tất cả các giá trị của m để phương trình có hai nghiệm x x1, 2 thỏa mãn x12x2 3
Câu 3 (1,0 điểm)
Giải hệ phương trình
5 1
4
x y xy
x y
Câu 4 (3,0 điểm)
Cho tam giác ABC vuông tại A ABAC có đường cao AH và I là trung điểm của BC Đường tròn tâm O đường kính AH cắt AB, AC lần lượt tại M và N (M và N khác A)
a) Chứng minh AB AM AC AN file word đề-đáp án Zalo 0946095198
b) Chứng minh tứ giác là tứ giác nội tiếp
Trang 6a) Giải phương trình x2019 x 2 2 x1.
b) Cho các số thực x y, thỏa mãn 5
4
x y xy Tìm giá trị nhỏ nhất của biểu thức Ax2y2
- HẾT -
Họ và tên học sinh: Số báo danh:
Họ, tên, chữ kí của GV coi khảo sát:
TÀI LI ỆU ÔN THI VÀO 10 TOÁN
15 ĐỀ ĐÁP ÁN KHẢO SÁT TOÁN 9 LẦN 1,2,3=30k/1 lần
15 ĐỀ ĐÁP ÁN THI THỬ TOÁN 9 LẦN 1,2,3=30k/1 lần
63 ĐỀ ĐÁP ÁN TOÁN VÀO 10 CÁC TỈNH 2017-2018; 2018-2019; 2019-2020=60k/1 bộ; 150k/3 bộ
33 ĐỀ ĐÁP ÁN CHUYÊN TOÁN VÀO 10 CÁC TỈNH 2019-2020=40k
VĂN
15 ĐỀ ĐÁP ÁN KHẢO SÁT VĂN 9 LẦN 1,2,3=30k/1 lần
15 ĐỀ ĐÁP ÁN THI THỬ VĂN 9 LẦN 1,2,3=30k/1 lần
20 ĐỀ ĐÁP ÁN VĂN VÀO 10 CÁC TỈNH 2017-2018=20k
38 ĐỀ ĐÁP ÁN VĂN VÀO 10 CÁC TỈNH 2018-2019=40k
59 ĐỀ ĐÁP ÁN VĂN VÀO 10 CÁC TỈNH 2019-2020=60k
58 ĐỀ ĐÁP ÁN VĂN VÀO 10 CÁC TỈNH 2017-2019=50k
117 ĐỀ ĐÁP ÁN VĂN VÀO 10 CÁC TỈNH 2017-2020=100k
32 ĐỀ-20 ĐÁP ÁN CHUYÊN VĂN VÀO 10 CÁC TỈNH 2019-2020=30k
ANH
15 ĐỀ ĐÁP ÁN KHẢO SÁT ANH 9 LẦN 1,2,3=30k/1 lần
15 ĐỀ ĐÁP ÁN THI THỬ ANH 9 LẦN 1,2,3=30k/1 lần
30 ĐỀ ĐÁP ÁN ANH VÀO 10 CÁC TỈNH 2019-2020=40k
9 ĐỀ ĐÁP ÁN CHUYÊN ANH VÀO 10 CÁC TỈNH 2019-2020=20k
Khảo sát lần 1 (tháng 11), khảo sát lần 2 (tháng 1), khảo sát lần 3 (tháng 3), khảo sát lần 4 (tháng 5) Thi thử lần 1 (tháng 1), thi thử lần 2 (tháng 3), thi thử lần 3 (tháng 5)
HÓA, LÍ
600 CÂU HỎI TRẮC NGHIỆM VẬT LÍ 9 CÓ ĐÁP ÁN=70k
2019-2020 VÀO 10 CHUYÊN HÓA CÁC TỈNH=20k
CÁC CHUYÊN ĐỀ HÓA THCS=100k
Trang 7ĐỀ 5 ĐỀ KIỂM TRA HỌC KỲ II Môn: Toán - L ớp 9
Th ời gian làm bài: 120 phút
I TNKQ (2 điểm) Ghi vào bài làm chữ cái đứng trước câu trả lời đúng nhất
Câu 1 Kết quả của biểu thức: M ( 7 5) 2 (2 7)2 là:
Câu 2 Cho hàm sốy(m2)xmx1 (x là biến, m là tham số) đồng biến, khi đó giá trị của m là:
A m = 2 B m < 2 C m2 D m >1
Câu 3 Cặp số (1; –2) là nghiệm của phương trình nào sau đây?
A 0x – 3y = 9 B 3x – 2y = 7 C 3x – y = 0 D 0x + 4y = 4
Câu 4 Cho ABC vuông tại A, có AB = 18 cm, AC = 24 cm Bán kính đường tròn ngoại tiếp đó bằng:
A 30 cm B 15 cm C 20 cm D 15 2 cm
Câu 5 Cho MNP vuông tại M, MP = 3cm, MN = 4cm Quay tam giác đó một vòng quanh cạnh MN được
một hình nón Diện tích xung quanh của hình nón đó là:
A 10 (cm2) B 20 (cm2) C 15 (cm2) D 24 (cm2)
II TỰ LUẬN (8,0 điểm)
Câu 6 (2 điểm)
1 Cho hệ phương trình: 3 – = 2 – 1
+ 2 = 3 + 2
a) Giải hệ phương trình (1) khi m = 1
b) Tìm m để hệ (1) có nghiệm (x; y) thỏa mãn: x – 3y < 0
2 Một thửa ruộng hình chữ nhật, nếu tăng chiều dài thêm 2m, chiều rộng thêm 3m thì diện tích tăng thêm
100m2 Nếu giảm cả chiều dài và chiều rộng đi 2m thì diện tích giảm đi 68m2 Tính diện tích thửa ruộng
đó
Câu 7 (2 điểm) Cho parapol P : yx2 và đường thẳng d :y2xm21 (m là tham số)
a) Tìm hoành độ giao điểm của (P) và (d) khi m = 2
b) Gọi A và B là giao điểm của (P) và (d); x A,x B lần lượt là hoành độ của điểm A và điểm B Tìm
m sao cho x A2 x B2 14
Câu 8 (3 điểm) Cho đường tròn (O; R) có đường kính AB Bán kính CO vuông góc với AB, M là một điểm bất
kỳ trên cung nhỏ AC (M khác A, C); BM cắt AC tại H Gọi K là hình chiếu của H trên AB
a) Chứng minh CBKH là tứ giác nội tiếp
b) Chứng minh ACM ACK
c) Trên đọan thẳng BM lấy điểm E sao cho BE = AM Chứng minh tam giác ECM là tam giác vuông cân tại C
d) Gọi đường thẳng (d) là tiếp tuyến của (O) tại điểm A; cho P là điểm nằm trên đường thẳng (d) sao cho hai điểm P, C nằm trong cùng một nửa mặt phẳng bờ AB và AP MB. R
MA Chứng minh đường
thẳng PB đi qua trung điểm của đoạn thẳng HK
Câu 9 (1 điểm) Tìm x, y thỏa mãn: 4 8 2 2
2
xy x
––––––––––––– HẾT ––––––––––––
Cán bộ coi thi không giải thích gì thêm
Họ tên thí sinh Số báo danh Phòng