1. Trang chủ
  2. » Trung học cơ sở - phổ thông

Lecture Strength of Materials I: Chapter 7 - PhD. Tran Minh Tu

20 10 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 2,46 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Pure Bending : Prismatic members subjected to equal and opposite couples acting in the same longitudinal plane.. Bending stress[r]

Trang 1

STRENGTH OF MATERIALS

Trang 2

CHAPTER

1/10/2013

BENDING

Trang 3

Contents 7.1 Introduction

7.2 Bending stress

7.3 Shearing stress in bending

7.4 Strength condition

7.5 Sample Problems

7.6 Deflections of beam

Trang 4

1/10/2013 4

7.1 Introduction

In previous charters, we considered the stresses in the bars caused

by axial loading and torsion Here we introduce the third fundamental loading: bending When deriving the relationship between the bending moment and the stresses causes, we find it again necessary to make certain simplifying assumptions

We use the same steps in the analysis of bending that we used for torsion in chapter 6

Trang 5

7.1 Introduction

Classification of Beam Supports

Trang 6

1/10/2013 6

7.1 Introduction

 Limitation

Trang 7

7.1 Introduction

 Segment BC: Mx≠0, Qy=0

=> Pure Bending

 Segments AB,CD: Mx≠0, Qy≠0

=> Nonuniform Bending

Trang 8

1/10/2013 8

7.1 Introduction

Pure Bending: Prismatic members subjected to equal and opposite couples acting in the same longitudinal plane

Trang 9

7.2 Bending stress

 Simplifying assumptions

Trang 10

1/10/2013 10

7.2 Bending stress

The positive bending moment causes the

material within the bottom portion of the beam

to stretch and the material within the top portion

to compress Consequently, between these two

regions there must be a surface, called the

neutral surface, in which longitudinal fibers of

the material will not undergo a change in

length

Neutral axis

Trang 11

7.2 Bending stress

Neutral fiber

dz

Due to bending moment Mx caused

by the applied loading, the

cross-section rotate relatively to each other

by the amount of d

dz c d cd     y

        

The Normal strain of the longitudinal

fiber cd that lies distance y below the

neutral surface

y

 Compatibility

Consider a segment of the beam

bounded by two cross-sections that

are separated by the infinitesimal

distance dz

Trang 12

12

7.2 Bending stress

 Equilibrium

z

y E

y

z x

dA 

x

y

z K

Mx

Because of the loads applied in the

plane yOz, thus: Nz=My=0 and Mx≠0

0

E

N    dA   yd A

0

x A

yd AS

0

E

M   xdA   xyd A

0

xy A

xyd AI

x – neutral axis (the neutral axis passes through the centroid C of the cross-section)

y - axis – the axis of symmetry of the cross-section

Trang 13

7.2 Bending stress

Mx>0: stretch top portion

Mx<0: compress top portion

y

z x

dA 

x

y

z K

Mx

2

M   ydA   y d AI

x

M EI

EIx – stiffness of beam

Mx – internal bending moment

 – radius of neutral longitudinal fiber

x z

x

M

y I

y – coordinate of point

Belong to tensile zone

 Flexure formula – section modulus

Trang 14

7.2 Bending stress

• Stress distribution

- Stresses vary linearly with

the distance y from neutral axis

• Maximum stresses at a cross-section

x t x

M

y I

 

x

M

y I

 

y t

max – the distance from N.A to a point farthest away from N.A in the tensile portion

y c

max – the distance from N.A to a point farthest away from N.A in the compressive portion

Trang 15

7.2 Bending stress

x y

min

max

h/2

h/2

z

Mx

max

2

/ 2

x x

I W

h

max max

2

min

2

   

with called the section modulus of the beam

Trang 16

1/10/2013 16

7.2 Bending stress

Trang 17

7.2 Bending stress

Properties of American Standard Shapes

Trang 18

1/10/2013 18

7.2 Bending stress

Trang 19

7.2 Bending stress

Trang 20

1/10/2013 20

7.2 Bending stress

Ngày đăng: 09/03/2021, 03:46

w