2. Kĩ năng: + Học sinh biết vận dụng các kiến thức đã học để giải các bài toán ứng dụng thực tế: giải bài toán bằng cách lập phương trình, hệ phương trình; bài toán về hình học không gia[r]
Trang 1UBND QUẬN LONG BIÊN
TRƯỜNG THCS VIỆT HƯNG
ĐỀ KHẢO SÁT THI VÀO LỚP 10 THPT MÔN TOÁN
Năm học: 2019 – 2020
Thời gian: 120 phút Ngày thi:………
I) Mục tiêu cần đạt:
1 Kiến thức: Kiểm tra các kiến thức của học sinh về các nội dung đã học trong
chương trình lớp 9
2 Kĩ năng: + Học sinh biết vận dụng các kiến thức đã học để giải các bài toán ứng
dụng thực tế: giải bài toán bằng cách lập phương trình, hệ phương trình; bài toán
về hình học không gian; bài toán chuyển động đều, lãi suất, tính phần trăm, nhiệt
điện, nồng độ dung dịch,;
+ Rèn cho học sinh kĩ năng giải hệ phương trình, kĩ năng biện luận và chứng minh bất đẳng thức
+ Rèn cho học sinh kĩ năng vẽ hình, chứng minh hình học phẳng
+ Rèn cho học sinh kĩ năng làm bài trong thời gian qui định, rèn kĩ năng
trình bày hợp lí khoa học, tính cẩn thận
3 Thái độ: Học sinh có thái độ nghiêm túc trong khi bài kiểm tra.
4 Phát triển năng lực: Giải quyết tình huống, tính toán, sử dụng ngôn ngữ toán
học, trình bày bài khoa học
II) Ma trận đề :
Mục đích
Nội dung chính
Nhận biết Thông hiểu Vận dụng Vận dụng
cao
Tổng
0.5
2 0.5
1 0.5
1 0.5
6 2.0
2 Bài toán ứng dụng
thực tế
1 2.0
1 2.0
3 Giải hệ phương
trình
1 1.0
1 1.0
4 Chứng minh bất
đẳng thức
1 0.5
1 0.5
5 Hệ thức lượng
trong tam giác vuông
2 0.5
2 0.5
1.0
1 0.25
1 0.75
1 0.25
2 1.25
6 3.5
7 Hình học không
gian
1 0.5
1 0.5
1.5
9
5.5
4
2.0
2
1
18 10
III) Nội dung đề thi: (đính kèm trang sau)
Trang 2IV) Đáp án và biểu điểm: (đính kèm trang sau)
Trang 3UBND QUẬN LONG BIÊN
TRƯỜNG THCS VIỆT HƯNG
ĐỀ KHẢO SÁT THI VÀO LỚP 10 THPT MÔN TOÁN
Năm học: 2019 – 2020
Thời gian: 120 phút Ngày thi:………
I TRẮC NGHIỆM: (2đ) Ghi vào bài làm chữ cái đứng trước câu trả lời đúng :
Câu 1: Đồ thị hàm số y 2 x song song với đường thẳng nào?
A yx2 B yx 3 C y x 1 D
1 2
y x
Câu 2:Hệ số góc của đường thẳng yx1 là:
Câu 3: Tam giác ABC vuông tại A có AC 6cm; BC 12cm; số đo ACB bằng :
Câu 4 : Giao điểm của đồ thị các hàm số y2x 3 và
3 1
7 7
y x
có tọa độ là :
D 5; 2
Câu 5 : Giá trị của tham số mđể đồ thị hàm số ym 2018x2019 đi qua điểm
1;1
A
Câu 6 : Một tam giác vuông có độ dài hai cạnh góc vuông là 6cm ; 8cm thì độ dài
đường cao ứng với cạnh huyền là :
A 4,8cm B 2, 4cm C 3cm D 4cm
Câu 7 : Dây ABcủa đường tròn O cm;5 có độ dài bằng 6cm Khoảng cách từ O
đến AB bằng :
A 2cm B 3cm C 4cm D 5cm
Câu 8: Hai tiếp tuyến của O R; tại A và Bcắt nhau tại M Biết OM 2R, khi đó
số đo AMB là :
II TỰ LUẬN : (8đ)
Câu 1 (2,5 điểm)
1) Giải bài toán bằng cách lập hệ phương trình hoặc phương trình:
Hai phân xưởng của một nhà máy theo kế hoạch phải làm tổng cộng 300 dụng cụ Nhưng khi thực hiện phân xưởng I vượt mức 10% kế hoạch của mình;
Trang 4phân xưởng II vượt mức 20% kế hoạch của mình, do đó cả hai phân xưởng đã làm được 340 dụng cụ Tính số dụng cụ mỗi phân xưởng phải làm theo kế hoạch
2) Một chậu hình trụ cao 20cm Diện tích đáy bằng nửa diện tích xung quanh Trong chậu có nước cao đến 15cm Hỏi phải thêm bao nhiêu nước vào chậu để nước vừa đầy chậu
Câu 2 (2,5 điểm)
1) Giải hệ phương trình :
2
4
1 1
x
y x y
2) Cho đường thẳng ( )d : y mx 2 và Parabol ( )P :
2
2
x
y
a) Chứng minh ( )P và ( )d luôn cắt nhau tại hai điểm phân biệt A B,
b) Gọi giao điểm của ( )d với trục tung là Gvà H K, lần lượt là hình chiếu của A B, trên trục hoành Tìm mđể diện tích tam giác GHK bằng 4
3) Cho x0;y0 thỏa mãn x y 1 Tìm giá trị nhỏ nhất của
2 2
Câu 3 (3,0 điểm) Cho đường tròn ( ; )O R , điểm M cố định nằm ngoài ( )O Kẻ hai tiếp tuyến MA MB, với đường tròn ( )O (A B, là tiếp điểm) Qua M kẻ cát tuyến MCD bất kì không đi qua ( )O (Cnằm giữa M và D) Gọi Klà trung điểm của CD
a) Chứng minh 5 điểm: M A O K B, , , , cùng thuộc một đường tròn
b) Chứng minh MC MD. không phụ thuộc vào vị trí của cát tuyến MCD
c) Gọi Elà giao điểm của tia BKvới đường tròn ( )O Chứng minh AEsong song với MK
d) Tìm vị trí của cát tuyến MCDđể diện tích tam giác MDEđạt giá trị lớn nhất
Trang 5HƯỚNG DẪN CHẤM ĐỀ KHẢO SÁT THI VÀO LỚP 10 THPT
I Trắc nghiệm: (2đ) Mỗi câu đúng được 0,25đ
II Tự luận: (8đ)
Điểm thành phần
Câu 1
2,5
điểm
1) Gọi số dụng cụ mà phân xưởng 1 và phân xưởng 2 phải làm theo
kế hoạch lần lượt là x, y (dụng cụ; x, y nguyên dương,
300; 300
x y )
0,25
Lập luận ra được phương trình: x y 300 (1) 0,25 Thực tế phân xưởng 1 làm được x10%x1,1x (dụng cụ)
Thực tế phân xưởng 2 làm được y20%y1, 2y(dụng cụ) 0,25 Theo đề bài ta có phương trình 1,1x1, 2y340 (2) 0,25
Từ (1) và (2) ta có hệ phương trình:
300 1,1 1, 2 340
x y
0,25
Giải hệ phương trình được x200;y100
Kết hợp với điều kiện có: số dụng cụ mà phân xưởng 1 và phân xưởng 2 phải làm theo kế hoạch lần lượt là 200 dụng cụ và 100 dụng cụ
0,5
0,25 2) Gọi R là bán kính đáy chậu và h là chiều cao của chậu.
Vì diện tích đáy bằng nửa diện tích xung quanh nên
R 2 Rh 2
Thể tích của chậu là: V R h2 20 20 80002 (cm3)
Thể tích nước trong chậu là: V1 20 15 60002 (cm3)
Thể tích nước phải thêm vào chậu là:
2 – 1 8000 – 6000 2000
Trang 6Câu 2
2,5
điểm
Giải được x=2 ; y= 4 và x = 0, y = 4 0,25 Kết hợp điều kiện và kết luận nghiệm của hệ phương trình 0,25 2)
a) Viết đúng phương trình hoành độ giao điểm: 2
2 4 0
x mx
Tính đúng ' m 2 4
Chứng tỏ ' 0 m nên ( )P và ( )d luôn cắt nhau tại hai điểm phân biệt A B,
0,25 0,25
b)
Viết đúng hệ thức Vi – et
1 2
4
2
x x
Chỉ ra được x x1 , 2trái dấu Giả sử x1 0 x2 hay x A 0x B
1 2
GHK
S OG HK x x
x x
Biến đổi và tìm ra được m 0 Kết hợp điều kiện và kết luận m 0
0,25 3)
Chứng minh bất đẳng thức:
2
; 2
a b a b
2
2
2 3
Nhận định dấu “=” xảy ra
1 2
x y
và kết luận min
25 2
0,25
0,25
Trang 7Câu 3
3 điểm
Vẽ
hình
0,25
a) Xét tứ giác MAOB có: MAO MBO 90
(gt) MAO MBO 180
và hai góc đó ở vị trí đối nhau
Xét O có OK là đường kính đi qua trung điểm K của dây CD
không đi qua tâm O
90
(Định lý đường kính và dây cung) Xét tứ giác MAOK có: MAO OKM 180
Tứ giác MAOK nội tiếp 2
0,25
Từ 1 và 2 5 điểm M A O K B, , , , cùng thuộc 1 đường tròn 0,25 b) Xét O có CBM DM B (góc nt và góc tạo bởi tiếp tuyến và dây
cung cùng chắn CB) Xét MBC và M BD có:
M chung và CBM M B D (cmt)
D
MB M
Lập luận: do M cố định, đường tròn ( )O cố định nên MBkhông đổi
2
D
0,5
c) Vì 5 điểm A, B, M,O, K cùng thuộc 1 đường tròn Tứ giác MAKB
Mà: BAM EA B (góc nt và góc tạo bởi tia tiếp tuyến và dây cung chắn AB)
0,25
Do đó: BKM AEB, hai góc này ở vị trí đồng vị AE //MK 0,25
Trang 8d) Do AE // DM SM ED SMAD Gọi H là hình chiếu vuông góc của
D lên tia MA
D
1 2
MA
S DH MA
Do MA không đổi nên SMAD lớn nhất DH lớn nhất
Mà: DH DA (Quan hệ giữa đường xiên và đường vuông góc), lại
có DA là dây cung của đường tròn O DA2R Suy ra
2R.
DH
0,25
Dấu bằng xảy ra DA là đường kính của O hay D là điểm đối
xứng với A qua O.
Vậy để SM ED lớn nhất Cát tuyến MCD đi qua điểm đối xứng
Lưu ý:
- HS làm cách khác đúng vẫn cho điểm tối đa