6.002 CIRCUITS ANDELECTRONICS Basic Circuit Analysis Method KVL and KCL method... LMD allows us to create the lumped circuit abstraction Lumped circuit element + -v i power consumed by
Trang 16.002 CIRCUITS AND
ELECTRONICS
Basic Circuit Analysis Method
(KVL and KCL method)
Trang 2=
∂
∂
t
B
φ
0
=
∂
∂
t q
Outside elements Inside elements
Allows us to create the lumped circuit
abstraction
wires resistors sources
Review
Lumped Matter Discipline LMD:
Constraints we impose on ourselves to simplify our analysis
Trang 3LMD allows us to create the
lumped circuit abstraction
Lumped circuit element +
-v
i
power consumed by element = vi
Review
Trang 4loop
KCL:
node
0
=
∑jν j
0
=
∑j j i
Review Review
Maxwell’s equations simplify to
algebraic KVL and KCL under LMD!
Trang 5KVL 0
= +
+ ab bc
v
0
= +
+i i
DEMO
1
R
2
R
4
R
5
R
3
R
a
c
+
–
Review
Trang 6Method 1: Basic KVL, KCL method of
Circuit analysis
Goal: Find all element v’s and i’s
write element v-i relationships (from lumped circuit abstraction) write KCL for all nodes
write KVL for all loops
1
2
3
lots of unknowns lots of equations lots of fun
solve
Trang 7Method 1: Basic KVL, KCL method of
Circuit analysis
For R,
For voltage source,
For current source,
Element Relationships
IR
V =
0
V
V =
0
I
I =
3 lumped circuit elements
R
0
V
o
I
+ –
J
Trang 8KVL, KCL Example
The Demo Circuit
+ –
1
R
2
R
4
R
5
R
3
R
a
c
0
0 =V
ν+
–
1
ν+ –
5
ν+ –
3
ν + –
2
ν+ –
4
ν+ –
Trang 9Associated variables discipline
ν
i
+
-Element e
Then power consumed
by element e =νi is positive Current is taken to be positive going
into the positive voltage terminal
Trang 10KVL, KCL Example
The Demo Circuit
+ –
1
R
2
R
4
R
5
R
3
R
a
c
0
0 =V
ν+
–
1
ν+ –
5
ν+ –
3
ν + –
1
L
2
L
4
L
3
L
2
ν+ –
4
ν+ –
2
i
1
i 0
i
5
i
3
i
4
i
Trang 1112 unknowns 5
0 5
0 ν , ι ι
1 Element relationships
3 KVL for loops
0
v =
1 1
1 i R
v =
2 2
2 i R
v =
3 3
3 i R
v =
4 4
4 i R
v =
5 5
5 i R
v = given
2 KCL at the nodes
redundant
0
4 3
1 + v − v =
v
0
2 1
−v v v
0
2 5
3 + v −v =
v
0
5 4
− v v v redundant
0
4 1
0 + i +i =
i
0
1 3
2 + i −i =
i
0
4 3
5 −i −i =
i
0
5 2
−i i i
a:
b:
d:
e:
6 equations
3 independent equations
3 independent equations
ns
12 equ
ations
/
( )v, i
L1:
L2:
L3:
L4:
Trang 12Other Analysis Methods Method 2— Apply element combination rules
B
C
D
⇔ R1 + R2 + + R N
⇔
1
G G2 G N G1 + G2 +G N
i
i
R
G = 1
⇔
1
V V2 V1 +V2
⇔
1
I I2 J I1 + I2
A R1 R2 R3 … R N
Trang 13Other Analysis Methods Method 2— Apply element combination rules
V
I
3 2
3 2
R R
R
R
+
V
I
3 2
3
2 1
R R
R
R R
R
+
+
=
+ –
V
?
=
I
1
R
3
R
2
R
+ –
+
Example
1
R
V
Trang 142
3
4
5
Select reference node ( ground)
from which voltages are measured
Label voltages of remaining nodes
with respect to ground
These are the primary unknowns
Write KCL for all but the ground
node, substituting device laws and
KVL
Solve for node voltages
Back solve for branch voltages and
Particular application of KVL, KCL method Method 3—Node analysis
Trang 15Example: Old Faithful
plus current source
0
V
1
R
2
R
4
R
5
R
3
R
J I1
0
V
+
Step 1 Step 2
Trang 16Example: Old Faithful
plus current source
0 )
( )
( )
(e1 −V0 G1 + e1 −e2 G3 + e1 G2 = KCL at e1
0 )
( )
( )
(e2 − e1 G3 + e2 −V0 G4 + e2 G5 − I1 = KCL at e 2
for convenience, write
i
i
R
G = 1
0
V
1
R
2
R
4
R
5
R
3
R
1
e
1
I
0
V
+
–
2
e
Trang 17Example: Old Faithful
plus current source
0 )
( )
( )
(e1 −V0 G1 + e1 −e2 G3 + e1 G2 = KCL at e1
0 )
( )
( )
(e2 − e1 G3 + e2 −V0 G4 + e2 G5 − I1 = KCL at l2
move constant terms to RHS & collect unknowns
) ( )
( )
) (
) (
)
i
i
R
G = 1
0
V
1
R
2
R
4
R
5
R
3
R
1
e
1
I
0
V
+
–
2
e
Trang 18In matrix form:
+
=
+ +
−
− +
+
1 0 4
0 1 2
1 5
4 3 3
3 3
2 1
I V G
V G e
e G
G G G
G G
G G
conductivity
matrix unknownnode
voltages
sources
3 5
4 3 3 2 1
1 0 4
0 1 3
2 1 3
3 5
4 3
2
1
G G
G G G G G
I V G
V G G
G G G
G G
G G e
e
− +
+ +
+
+
+ +
+ +
=
Solve
( )( ) ( )( )
5
G 3
G 4
G 3 G
2 3
G 5
G 2
G 4
G 2
G 3
G 2
G 5
G 1
G 4
G 1
G 3
G 1 G
1
I 0
V 4
G 3
G 0
V 1
G 5
G 4
G 3
G 1
e
+ +
+ +
+ +
+ +
+ +
+ +
=
5 3 4 3
2 3 5 2 4 2 3 2 5 1 4 1 3 1
1 0 4 3 2 1 0
1 3 2
G G G G G G G G G G G G G G G G G
I V G G G G V
G G e
+ +
+ +
+ +
+ +
+ +
+ +
=
Trang 19Solve, given
K 2 8
1 G
G
5
1 =
K 9 3
1 G
G
4
2 =
K 5 1
1
G 3 =
0
1 =
I
3
G 5
G 4
G 3
G 3
G 2
G 1 G
1
I 0
V 4
G 3
G 2
G 1
G 0
V 1
G 3
G 2
e
− +
+ +
+ +
+ +
+
+
=
1 5 1
1 9
3
1 2
8
1 3
G 2
G 1
1 2 8
1 9
3
1 5
1
1 G
G
G 3 + 4 + 5 = + + =
0 2
5 1
1 1
9 3
1 1
5 1
1 2
8
1 e
−
× +
×
=