1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Circuits & Electronics P2

19 429 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Basic circuit analysis method (kvl and kcl method)
Trường học Massachusetts Institute of Technology
Chuyên ngành Circuits and Electronics
Thể loại bài giảng
Năm xuất bản 2000
Thành phố Cambridge
Định dạng
Số trang 19
Dung lượng 191,8 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

6.002 CIRCUITS ANDELECTRONICS Basic Circuit Analysis Method KVL and KCL method... LMD allows us to create the lumped circuit abstraction Lumped circuit element + -v i power consumed by

Trang 1

6.002 CIRCUITS AND

ELECTRONICS

Basic Circuit Analysis Method

(KVL and KCL method)

Trang 2

=

t

B

φ

0

=

t q

Outside elements Inside elements

Allows us to create the lumped circuit

abstraction

wires resistors sources

Review

Lumped Matter Discipline LMD:

Constraints we impose on ourselves to simplify our analysis

Trang 3

LMD allows us to create the

lumped circuit abstraction

Lumped circuit element +

-v

i

power consumed by element = vi

Review

Trang 4

loop

KCL:

node

0

=

jν j

0

=

j j i

Review Review

Maxwell’s equations simplify to

algebraic KVL and KCL under LMD!

Trang 5

KVL 0

= +

+ ab bc

v

0

= +

+i i

DEMO

1

R

2

R

4

R

5

R

3

R

a

c

+

Review

Trang 6

Method 1: Basic KVL, KCL method of

Circuit analysis

Goal: Find all element v’s and i’s

write element v-i relationships (from lumped circuit abstraction) write KCL for all nodes

write KVL for all loops

1

2

3

lots of unknowns lots of equations lots of fun

solve

Trang 7

Method 1: Basic KVL, KCL method of

Circuit analysis

For R,

For voltage source,

For current source,

Element Relationships

IR

V =

0

V

V =

0

I

I =

3 lumped circuit elements

R

0

V

o

I

+ –

J

Trang 8

KVL, KCL Example

The Demo Circuit

+ –

1

R

2

R

4

R

5

R

3

R

a

c

0

0 =V

ν+

1

ν+ –

5

ν+ –

3

ν + –

2

ν+ –

4

ν+ –

Trang 9

Associated variables discipline

ν

i

+

-Element e

Then power consumed

by element e =νi is positive Current is taken to be positive going

into the positive voltage terminal

Trang 10

KVL, KCL Example

The Demo Circuit

+ –

1

R

2

R

4

R

5

R

3

R

a

c

0

0 =V

ν+

1

ν+ –

5

ν+ –

3

ν + –

1

L

2

L

4

L

3

L

2

ν+ –

4

ν+ –

2

i

1

i 0

i

5

i

3

i

4

i

Trang 11

12 unknowns 5

0 5

0 ν , ι ι

1 Element relationships

3 KVL for loops

0

v =

1 1

1 i R

v =

2 2

2 i R

v =

3 3

3 i R

v =

4 4

4 i R

v =

5 5

5 i R

v = given

2 KCL at the nodes

redundant

0

4 3

1 + vv =

v

0

2 1

v v v

0

2 5

3 + vv =

v

0

5 4

v v v redundant

0

4 1

0 + i +i =

i

0

1 3

2 + ii =

i

0

4 3

5 −ii =

i

0

5 2

i i i

a:

b:

d:

e:

6 equations

3 independent equations

3 independent equations

ns

12 equ

ations

/

( )v, i

L1:

L2:

L3:

L4:

Trang 12

Other Analysis Methods Method 2— Apply element combination rules

B

C

D

R1 + R2 + + R N

1

G G2 G N G1 + G2 +G N

i

i

R

G = 1

1

V V2 V1 +V2

1

I I2 J I1 + I2

A R1 R2 R3 … R N

Trang 13

Other Analysis Methods Method 2— Apply element combination rules

V

I

3 2

3 2

R R

R

R

+

V

I

3 2

3

2 1

R R

R

R R

R

+

+

=

+ –

V

?

=

I

1

R

3

R

2

R

+ –

+

Example

1

R

V

Trang 14

2

3

4

5

Select reference node ( ground)

from which voltages are measured

Label voltages of remaining nodes

with respect to ground

These are the primary unknowns

Write KCL for all but the ground

node, substituting device laws and

KVL

Solve for node voltages

Back solve for branch voltages and

Particular application of KVL, KCL method Method 3—Node analysis

Trang 15

Example: Old Faithful

plus current source

0

V

1

R

2

R

4

R

5

R

3

R

J I1

0

V

+

Step 1 Step 2

Trang 16

Example: Old Faithful

plus current source

0 )

( )

( )

(e1 −V0 G1 + e1 −e2 G3 + e1 G2 = KCL at e1

0 )

( )

( )

(e2 − e1 G3 + e2 −V0 G4 + e2 G5 − I1 = KCL at e 2

for convenience, write

i

i

R

G = 1

0

V

1

R

2

R

4

R

5

R

3

R

1

e

1

I

0

V

+

2

e

Trang 17

Example: Old Faithful

plus current source

0 )

( )

( )

(e1 −V0 G1 + e1 −e2 G3 + e1 G2 = KCL at e1

0 )

( )

( )

(e2 − e1 G3 + e2 −V0 G4 + e2 G5 − I1 = KCL at l2

move constant terms to RHS & collect unknowns

) ( )

( )

) (

) (

)

i

i

R

G = 1

0

V

1

R

2

R

4

R

5

R

3

R

1

e

1

I

0

V

+

2

e

Trang 18

In matrix form:

+

=

+ +

− +

+

1 0 4

0 1 2

1 5

4 3 3

3 3

2 1

I V G

V G e

e G

G G G

G G

G G

conductivity

matrix unknownnode

voltages

sources

3 5

4 3 3 2 1

1 0 4

0 1 3

2 1 3

3 5

4 3

2

1

G G

G G G G G

I V G

V G G

G G G

G G

G G e

e

− +

+ +

+

+

+ +

+ +

=

Solve

( )( ) ( )( )

5

G 3

G 4

G 3 G

2 3

G 5

G 2

G 4

G 2

G 3

G 2

G 5

G 1

G 4

G 1

G 3

G 1 G

1

I 0

V 4

G 3

G 0

V 1

G 5

G 4

G 3

G 1

e

+ +

+ +

+ +

+ +

+ +

+ +

=

5 3 4 3

2 3 5 2 4 2 3 2 5 1 4 1 3 1

1 0 4 3 2 1 0

1 3 2

G G G G G G G G G G G G G G G G G

I V G G G G V

G G e

+ +

+ +

+ +

+ +

+ +

+ +

=

Trang 19

Solve, given

K 2 8

1 G

G

5

1 =

K 9 3

1 G

G

4

2 =

K 5 1

1

G 3 =

0

1 =

I

3

G 5

G 4

G 3

G 3

G 2

G 1 G

1

I 0

V 4

G 3

G 2

G 1

G 0

V 1

G 3

G 2

e

− +

+ +

+ +

+ +

+

+

=

1 5 1

1 9

3

1 2

8

1 3

G 2

G 1

1 2 8

1 9

3

1 5

1

1 G

G

G 3 + 4 + 5 = + + =

0 2

5 1

1 1

9 3

1 1

5 1

1 2

8

1 e

× +

×

=

Ngày đăng: 27/10/2013, 22:15

TỪ KHÓA LIÊN QUAN