To simplify notation, we omit the arguments whenever there is no ambiguity... The case =,1is analogous.. There are two cases:... This market admits arbitrage.. LetfIP be one of them.. Le
Trang 1A two-dimensional market model
LetB ( t ) = ( B 1 ( t ) ;B 2 ( t )) ; 0t T;be a two-dimensional Brownian motion on ;F;P) Let
F( t ) ; 0tT;be the filtration generated byB
In what follows, all processes can depend on tand !, but are adapted to F( t ) ; 0 t T To simplify notation, we omit the arguments whenever there is no ambiguity
Stocks:
dS 1 = S 1 [ 1 dt + 1 dB 1 ] ;
dS 2 = S 2
2 dt + 2 dB 1 +q
1, 2 2 dB 2
:
We assume 1 > 0 ; 2 > 0 ; ,11 :Note that
dS 1 dS 2 = S 21 21 dB 1 dB 1 = 21 S 21 dt;
dS 2 dS 2 = S 22 2 22 dB 1 dB 1 + S 22 (1, 2 ) 22 dB 2 dB 2
= 22 S 22 dt;
dS 1 dS 2 = S 1 1 S 2 2 dB 1 dB 1 = 1 2 S 1 S 2 dt:
In other words,
dS1
S1
has instantaneous variance 21,
dS2
S2
has instantaneous variance 22,
dS1
S1
and dS2
S2 have instantaneous covariance 1 2
Accumulation factor:
( t ) = expZ t
0 r du
:
The market price of risk equations are
1 1 = 1 ,r
2 1 +q
1, 2 2 2 = 2 ,r (MPR)
203
Trang 2The solution to these equations is
1 = 1,r
1 ;
2 = 1 ( 2,r ), 2 ( 1,r )
1 2p
1, 2 ;
provided,1 < < 1
Suppose,1 < < 1 Then (MPR) has a unique solution( 1 ; 2 ); we define
Z ( t ) = exp
,
Z t
0 1 dB 1,
Z t
0 2 dB 2,1 2Z t
0 ( 21 + 22 ) du
;
f
IP ( A ) =Z
A Z ( T ) dIP; 8A2 F:
f
IP is the unique risk-neutral measure Define
e
B 1 ( t ) =Z t
0 1 du + B 1 ( t ) ;
e
B 2 ( t ) =Z t
0 2 du + B 2 ( t ) :
Then
dS 1 = S 1
h
r dt + 1 d Be1
i
;
dS 2 = S 2
r dt + 2 d Be1 +q
1, 2 2 d Be2
:
We have changed the mean rates of return of the stock prices, but not the variances and covariances
dX = 1 dS 1 + 2 dS 2 + r ( X, 1 S 1, 2 S 2 ) dt
d
X
= 1 ( dX,rX dt )
= 1 1 ( dS 1,rS 1 dt ) + 1 2 ( dS 2,rS 2 dt )
= 1 1 S 1 1 d Be1 + 1 2 S 2
2 d Be1 +q
1, 2 2 d Be2
:
LetV beF( T )-measurable Define thefIP-martingale
Y ( t ) =fIE
V ( T )
F( t )
Trang 3The Martingale Representation Corollary implies
Y ( t ) = Y (0) +Z t
0 1 d Be1 +Z t
0 2 d Be2 :
We have
d
X
=
1
1 S 1 1 + 1 2 S 2 2
d Be1
+ 1 2 S 2
q
1, 2 2 d Be2 ;
dY = 1 d Be1 + 2 d Be2 :
We solve the equations
1
1 S 1 1 + 1 2 S 2 2 = 1
1
2 S 2
q
1, 2 2 = 2
for the hedging portfolio( 1 ; 2 ) With this choice of( 1 ; 2 )and setting
X (0) = Y (0) = IE Vf ( T ) ;
we haveX ( t ) = Y ( t ) ; 0tT;and in particular,
X ( T ) = V:
EveryF( T )-measurable random variable can be hedged; the market is complete.
The case =,1is analogous Assume that = 1 Then
dS 1 = S 1 [ 1 dt + 1 dB 1 ]
dS 2 = S 2 [ 2 dt + 2 dB 1 ]
The stocks are perfectly correlated
The market price of risk equations are
1 1 = 1,r
The process 2 is free There are two cases:
Trang 4Case I: 1, 1r
= 2, 2r :There is no solution to (MPR), and consequently, there is no risk-neutral measure This market admits arbitrage Indeed
d
X
= 1 1 ( dS 1,rS 1 dt ) + 1 2 ( dS 2,rS 2 dt )
= 1 1 S 1 [( 1,r ) dt + 1 dB 1 ] + 1 2 S 2 [( 2,r ) dt + 2 dB 1 ]
Suppose1
,r
1 > 2
,r
2 :Set
1 = 1 1 S 1 ; 2 =,
1
2 S 2 :
Then
d
X
= 1
1,r
1 dt + dB 1
,
1
2,r
2 dt + dB 1
= 1
1,r
2,r
2
Positive
dt
Case II: 1
,r
1 = 2
,r
2 :The market price of risk equations
1 1 = 1,r
2 1 = 2,r
have the solution
1 = 1,r
1 = 2,r
2 ;
2is free; there are infinitely many risk-neutral measures LetfIP be one of them
Hedging:
d
X
= 1 1 S 1 [( 1,r ) dt + 1 dB 1 ] + 1 2 S 2 [( 2,r ) dt + 2 dB 1 ]
= 1 1 S 1 1 [ 1 dt + dB 1 ] + 1 2 S 2 2 [ 1 dt + dB 1 ]
=
1
1 S 1 1 + 1 2 S 2 2
d Be1 :
Notice thatBe2does not appear
LetV be anF( T )-measurable random variable IfV depends onB 2, then it can probably not
be hedged For example, if
V = h ( S 1 ( T ) ;S 2 ( T )) ;
and 1 or 2 depend onB 2, then there is trouble
Trang 5More precisely, we define thefIP-martingale
Y ( t ) = IEf
V ( T )
F( t )
We can write
Y ( t ) = Y (0) +Z t
0 1 d Be1 +Z t
0 2 d Be2 ;
so
dY = 1 d Be1 + 2 d Be2 :
To getd
X
to matchdY, we must have
2 = 0 :
... Trang 3The Martingale Representation Corollary implies
Y ( t ) = Y (0) +Z t...
EveryF( T )-measurable random variable can be hedged; the market is complete.
The case =,1is analogous Assume that...
Trang 5More precisely, we define thefIP-martingale
Y ( t ) = IEf