1. Trang chủ
  2. » Giáo Dục - Đào Tạo

A two-dimensional market model

6 283 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề A two-dimensional market model
Trường học Standard University
Chuyên ngành Finance
Thể loại Luận văn
Thành phố City Name
Định dạng
Số trang 6
Dung lượng 126,07 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

To simplify notation, we omit the arguments whenever there is no ambiguity... The case =,1is analogous.. There are two cases:... This market admits arbitrage.. LetfIP be one of them.. Le

Trang 1

A two-dimensional market model

LetB ( t ) = ( B 1 ( t ) ;B 2 ( t )) ; 0t T;be a two-dimensional Brownian motion on ;F;P) Let

F( t ) ; 0tT;be the filtration generated byB

In what follows, all processes can depend on tand !, but are adapted to F( t ) ; 0  t  T To simplify notation, we omit the arguments whenever there is no ambiguity

Stocks:

dS 1 = S 1 [  1 dt +  1 dB 1 ] ;

dS 2 = S 2



 2 dt +  2 dB 1 +q

1, 2  2 dB 2



:

We assume 1 > 0 ;  2 > 0 ; ,11 :Note that

dS 1 dS 2 = S 21  21 dB 1 dB 1 =  21 S 21 dt;

dS 2 dS 2 = S 22  2  22 dB 1 dB 1 + S 22 (1, 2 )  22 dB 2 dB 2

=  22 S 22 dt;

dS 1 dS 2 = S 1  1 S 2  2 dB 1 dB 1 =  1  2 S 1 S 2 dt:

In other words,

 dS1

S1

has instantaneous variance 21,

 dS2

S2

has instantaneous variance 22,

 dS1

S1

and dS2

S2 have instantaneous covariance 1  2

Accumulation factor:

( t ) = expZ t

0 r du

:

The market price of risk equations are

 1  1 =  1 ,r

 2  1 +q

1, 2  2  2 =  2 ,r (MPR)

203

Trang 2

The solution to these equations is

 1 =  1,r

 1 ;

 2 =  1 (  2,r ), 2 (  1,r )

 1  2p

1, 2 ;

provided,1 <  < 1

Suppose,1 <  < 1 Then (MPR) has a unique solution(  1 ; 2 ); we define

Z ( t ) = exp

,

Z t

0  1 dB 1,

Z t

0  2 dB 2,1 2Z t

0 (  21 +  22 ) du

;

f

IP ( A ) =Z

A Z ( T ) dIP; 8A2 F:

f

IP is the unique risk-neutral measure Define

e

B 1 ( t ) =Z t

0  1 du + B 1 ( t ) ;

e

B 2 ( t ) =Z t

0  2 du + B 2 ( t ) :

Then

dS 1 = S 1

h

r dt +  1 d Be1

i

;

dS 2 = S 2



r dt +  2 d Be1 +q

1, 2  2 d Be2



:

We have changed the mean rates of return of the stock prices, but not the variances and covariances

dX =  1 dS 1 +  2 dS 2 + r ( X, 1 S 1, 2 S 2 ) dt

d

X



= 1 ( dX,rX dt )

= 1  1 ( dS 1,rS 1 dt ) + 1  2 ( dS 2,rS 2 dt )

= 1  1 S 1  1 d Be1 + 1  2 S 2



 2 d Be1 +q

1, 2  2 d Be2



:

LetV beF( T )-measurable Define thefIP-martingale

Y ( t ) =fIE

V ( T )

F( t )

Trang 3

The Martingale Representation Corollary implies

Y ( t ) = Y (0) +Z t

0 1 d Be1 +Z t

0 2 d Be2 :

We have

d

X



=



1

 1 S 1  1 + 1  2 S 2  2



d Be1

+ 1  2 S 2

q

1, 2  2 d Be2 ;

dY = 1 d Be1 + 2 d Be2 :

We solve the equations

1

 1 S 1  1 + 1  2 S 2  2 = 1

1

 2 S 2

q

1, 2  2 = 2

for the hedging portfolio( 1 ;  2 ) With this choice of( 1 ;  2 )and setting

X (0) = Y (0) = IE Vf ( T ) ;

we haveX ( t ) = Y ( t ) ; 0tT;and in particular,

X ( T ) = V:

EveryF( T )-measurable random variable can be hedged; the market is complete.

The case =,1is analogous Assume that = 1 Then

dS 1 = S 1 [  1 dt +  1 dB 1 ]

dS 2 = S 2 [  2 dt +  2 dB 1 ]

The stocks are perfectly correlated

The market price of risk equations are

 1  1 =  1,r

The process 2 is free There are two cases:

Trang 4

Case I:  1, 1r

=  2, 2r :There is no solution to (MPR), and consequently, there is no risk-neutral measure This market admits arbitrage Indeed

d

X



= 1  1 ( dS 1,rS 1 dt ) + 1  2 ( dS 2,rS 2 dt )

= 1  1 S 1 [(  1,r ) dt +  1 dB 1 ] + 1  2 S 2 [(  2,r ) dt +  2 dB 1 ]

Suppose1

,r

1 > 2

,r

2 :Set

 1 = 1  1 S 1 ;  2 =,

1

 2 S 2 :

Then

d

X



= 1



 1,r

 1 dt + dB 1

 ,

1



 2,r

 2 dt + dB 1



= 1



 1,r

 2,r

 2



Positive

dt

Case II: 1

,r

1 = 2

,r

2 :The market price of risk equations

 1  1 =  1,r

 2  1 =  2,r

have the solution

 1 =  1,r

 1 =  2,r

 2 ;

 2is free; there are infinitely many risk-neutral measures LetfIP be one of them

Hedging:

d

X



= 1  1 S 1 [(  1,r ) dt +  1 dB 1 ] + 1  2 S 2 [(  2,r ) dt +  2 dB 1 ]

= 1  1 S 1  1 [  1 dt + dB 1 ] + 1  2 S 2  2 [  1 dt + dB 1 ]

=



1

 1 S 1  1 + 1  2 S 2  2



d Be1 :

Notice thatBe2does not appear

LetV be anF( T )-measurable random variable IfV depends onB 2, then it can probably not

be hedged For example, if

V = h ( S 1 ( T ) ;S 2 ( T )) ;

and 1 or 2 depend onB 2, then there is trouble

Trang 5

More precisely, we define thefIP-martingale

Y ( t ) = IEf 

V ( T )

F( t )

We can write

Y ( t ) = Y (0) +Z t

0 1 d Be1 +Z t

0 2 d Be2 ;

so

dY = 1 d Be1 + 2 d Be2 :

To getd

X 

to matchdY, we must have

2 = 0 :

...

Trang 3

The Martingale Representation Corollary implies

Y ( t ) = Y (0) +Z t...

EveryF( T )-measurable random variable can be hedged; the market is complete.

The case =,1is analogous Assume that...

Trang 5

More precisely, we define thefIP-martingale

Y ( t ) = IEf

Ngày đăng: 18/10/2013, 02:20