Since the coefficients in SDE1 and SDE2 do not depend on time, the bond price depends ontandT only through their difference = T,t.. We compute its stochastic differential and set thedtte
Trang 1A two-factor model (Duffie & Kan)
Let us define:
X 1 ( t ) =Interest rate at timet
X 2 ( t ) =Yield at timeton a bond maturing at timet + 0
LetX 1 (0) > 0,X 2 (0) > 0be given, and letX 1 ( t ) andX 2 ( t )be given by the coupled stochastic
differential equations
dX 1 ( t ) = ( a 11 X 1 ( t ) + a 12 X 2 ( t ) + b 1 ) dt + 1
q
1 X 1 ( t ) + 2 X 2 ( t ) + dW 1 ( t ) ; (SDE1)
dX 2 ( t ) = ( a 21 X 1 ( t ) + a 22 X 2 ( t ) + b 2 ) dt + 2
q
1 X 1 ( t ) + 2 X 2 ( t ) + ( dW 1 ( t ) +q
1, 2 dW 2 ( t )) ;
(SDE2) whereW 1 andW 2are independent Brownian motions To simplify notation, we define
Y ( t ) 4
= 1 X 1 ( t ) + 2 X 2 ( t ) + ;
W 3 ( t ) 4
= W 1 ( t ) +q
1, 2 W 2 ( t ) :
ThenW 3is a Brownian motion with
dW 1 ( t ) dW 3 ( t ) = dt;
and
dX 1 dX 1 = 21 Y dt; dX 2 dX 2 = 22 Y dt; dX 1 dX 2 = 1 2 Y dt:
319
Trang 232.1 Non-negativity of Y
dY = 1 dX 1 + 2 dX 2
= ( 1 a 11 X 1 + 1 a 12 X 2 + 1 b 1 ) dt + ( 2 a 21 X 1 + 2 a 22 X 2 + 2 b 2 ) dt
+p
Y ( 1 1 dW 1 + 2 2 dW 1 + 2
q
1, 2 2 dW 2 )
= [( 1 a 11 + 2 a 21 ) X 1 + ( 1 a 12 + 2 a 22 ) X 2 ] dt + ( 1 b 1 + 2 b 2 ) dt
+ ( 21 21 + 2 1 2 1 2 + 22 22 ) 1 2q
Y ( t ) dW 4 ( t ) where
W 4 ( t ) = ( 1 1 + 2 2 ) W 1 ( t ) + 2p
1, 2 2 W 2 ( t )
q
21 21 + 2 1 2 1 2 + 22 22
is a Brownian motion We shall choose the parameters so that:
Assumption 1: For some , 1 a 11 + 2 a 21 = 1 ; 1 a 12 + 2 a 22 = 2 :
Then
dY = [ 1 X 1 + 2 X 2 + ] dt + ( 1 b 1 + 2 b 2, ) dt
+ ( 21 21 + 2 1 2 1 2 + 22 22 ) 1 2p
Y dW 4
= + ( 1 b 1 + 2 b 2, ) dt + ( 21 21 + 2 1 2 1 2 + 22 22 ) 1 2p
Y dW 4 :
From our discussion of the CIR process, we recall thatY will stay strictly positive provided that:
Assumption 2: Y (0) = 1 X 1 (0) + 2 X 2 (0) + > 0 ;
and
Assumption 3: 1 b 1 + 2 b 2,
1
2 ( 21 21 + 2 1 2 1 2 + 22 22 ) :
Under Assumptions 1,2, and 3,
Y ( t ) > 0 ; 0t <1; almost surely, and (SDE1) and (SDE2) make sense These can be rewritten as
dX 1 ( t ) = ( a 11 X 1 ( t ) + a 12 X 2 ( t ) + b 1 ) dt + 1
q
Y ( t ) dW 1 ( t ) ; (SDE1’)
dX 2 ( t ) = ( a 21 X 1 ( t ) + a 22 X 2 ( t ) + b 2 ) dt + 2
q
Y ( t ) dW 3 ( t ) : (SDE2’)
Trang 332.2 Zero-coupon bond prices
The value at timetT of a zero-coupon bond paying $1 at timeT is
B ( t;T ) = IE
"
exp
(
,
Z T
t X 1 ( u ) du
)
F( t )
# :
Since the pair ( X 1 ;X 2 ) of processes is Markov, this is random only through a dependence on
X 1 ( t ) ;X 2 ( t ) Since the coefficients in (SDE1) and (SDE2) do not depend on time, the bond price depends ontandT only through their difference = T,t Thus, there is a functionB ( x 1 ;x 2 ; )
of the dummy variablesx 1 ;x 2and, so that
B ( X 1 ( t ) ;X 2 ( t ) ;T,t ) = IE
"
exp
(
,
Z T
t X 1 ( u ) du
)
F( t )
# :
The usual tower property argument shows that
exp ,
Z t
0 X 1 ( u ) du
B ( X 1 ( t ) ;X 2 ( t ) ;T ,t )
is a martingale We compute its stochastic differential and set thedtterm equal to zero
d
exp
,
Z t
0 X 1 ( u ) du
B ( X 1 ( t ) ;X 2 ( t ) ;T ,t )
= exp
,
Z t
0 X 1 ( u ) du
,X 1 B dt + B x1 dX 1 + B x2 dX 2,B dt
+ 1 2 B x1x1 dX 1 dX 1 + B x1x2 dX 1 dX 2 + 1 2 B x2x2 dX 2 dX 2
= exp
,
Z t
0 X 1 ( u ) du
,X 1 B + ( a 11 X 1 + a 12 X 2 + b 1 ) B x1+ ( a 21 X 1 + a 22 X 2 + b 2 ) B x2
,B
+ 1 2 21 Y B x1x1 + 1 2 Y B x1x2 + 1 2 22 Y B x2x2
dt
+ 1
p
Y B x1 dW 1 + 2
p
Y B x2 dW 3
The partial differential equation forB ( x 1 ;x 2 ; )is
,x 1 B,B +( a 11 x 1 + a 12 x 2 + b 1 ) B x1+( a 21 x 1 + a 22 x 2 + b 2 ) B x2+ 1 2 21 ( 1 x 1 + 2 x 2 + ) B x1x1
+ 1 2 ( 1 x 1 + 2 x 2 + ) B x1x2 + 1 2 22 ( 1 x 1 + 2 x 2 + ) B x2x2 = 0 : (PDE)
We seek a solution of the form
B ( x 1 ;x 2 ; ) = expf,x 1 C 1 ( ),x 2 C 2 ( ),A ( )g;
valid for all 0and allx 1 ;x 2satisfying
Trang 4We must have
B ( x 1 ;x 2 ; 0) = 1 ; 8x 1 ;x 2 satisfying (*);
because = 0corresponds tot = T This implies the initial conditions
C 1 (0) = C 2 (0) = A (0) = 0 : (IC)
We want to findC 1 ( ) ;C 2 ( ) ;A ( )for > 0 We have
B ( x 1 ;x 2 ; ) =
,x 1 C0
1 ( ),x 2 C0
2 ( ),A0
( )
B ( x 1 ;x 2 ; ) ;
B x1( x 1 ;x 2 ; ) =,C 1 ( ) B ( x 1 ;x 2 ; ) ;
B x2( x 1 ;x 2 ; ) =,C 2 ( ) B ( x 1 ;x 2 ; ) ;
B x1x1( x 1 ;x 2 ; ) = C 21 ( ) B ( x 1 ;x 2 ; ) ;
B x1x2( x 1 ;x 2 ; ) = C 1 ( ) C 2 ( ) B ( x 1 ;x 2 ; ) ;
B x2x2( x 1 ;x 2 ; ) = C 22 ( ) B ( x 1 ;x 2 ; ) :
(PDE) becomes
0 = B ( x 1 ;x 2 ; )
,x 1 + x 1 C0
1 ( ) + x 2 C0
2 ( ) + A0( ),( a 11 x 1 + a 12 x 2 + b 1 ) C 1 ( )
,( a 21 x 1 + a 22 x 2 + b 2 ) C 2 ( ) + 1 2 21 ( 1 x 1 + 2 x 2 + ) C 21 ( ) + 1 2 ( 1 x 1 + 2 x 2 + ) C 1 ( ) C 2 ( ) + 1 2 22 ( 1 x 1 + 2 x 2 + ) C 22 ( )
= x 1 B ( x 1 ;x 2 ; )
,1 + C0
1 ( ),a 11 C 1 ( ),a 21 C 2 ( ) + 1 2 21 1 C 21 ( ) + 1 2 1 C 1 ( ) C 2 ( ) + 1 2 22 1 C 22 ( )
+ x 2 B ( x 1 ;x 2 ; )
C0
2 ( ),a 12 C 1 ( ),a 22 C 2 ( ) + 1 2 21 2 C 21 ( ) + 1 2 2 C 1 ( ) C 2 ( ) + 1 2 22 2 C 22 ( )
+ B ( x 1 ;x 2 ; )
A0( ),b 1 C 1 ( ),b 2 C 2 ( ) + 1 2 21 C 21 ( ) + 1 2 C 1 ( ) C 2 ( ) + 1 2 22 C 22 ( )
We get three equations:
C0
1 ( ) = 1 + a 11 C 1 ( ) + a 21 C 2 ( ),1 2 21 1 C 21 ( ), 1 2 1 C 1 ( ) C 2 ( ),1 2 22 1 C 22 ( ) ;
(1)
C 1 (0) = 0;
C0
2 ( ) = a 12 C 1 ( ) + a 22 C 2 ( ),1 2 21 2 C 21 ( ), 1 2 2 C 1 ( ) C 2 ( ),1 2 22 2 C 22 ( ) ; (2)
C 2 (0) = 0;
A0
( ) = b 1 C 1 ( ) + b 2 C 2 ( ),1 2 21 C 21 ( ), 1 2 C 1 ( ) C 2 ( ),1 2 22 C 22 ( ) ; (3)
A (0) = 0;
Trang 5We first solve (1) and (2) simultaneously numerically, and then integrate (3) to obtain the function
A ( )
32.3 Calibration
Let 0 > 0be given The value at timetof a bond maturing at timet + 0is
B ( X 1 ( t ) ;X 2 ( t ) ; 0 ) = expf,X 1 ( t ) C 1 ( 0 ),X 2 ( t ) C 2 ( 0 ),A ( 0 )g
and the yield is
,
1
0 log B ( X 1 ( t ) ;X 2 ( t ) ; 0 ) = 1 0 [ X 1 ( t ) C 1 ( 0 ) + X 2 ( t ) C 2 ( 0 ) + A ( 0 )] :
But we have set up the model so thatX 2 ( t )is the yield at timetof a bond maturing at timet + 0 Thus
X 2 ( t ) = 1 0 [ X 1 ( t ) C 1 ( 0 ) + X 2 ( t ) C 2 ( 0 ) + A ( 0 )] :
This equation must hold for every value ofX 1 ( t )andX 2 ( t ), which implies that
C 1 ( 0 ) = 0 ; C 2 ( 0 ) = 0 ; A ( ) = 0 :
We must choose the parameters
a 11 ;a 12 ;b 1 ; a 21 ;a 22 ;b 2 ; 1 ; 2 ; ; 1 ;; 2 ;
so that these three equations are satisfied
...and
dX dX = 21 Y dt; dX dX = 22 Y dt; dX dX = Y dt:
319
Trang 232.1...
q
21 21 + 2 + 22 22
is a Brownian motion We shall choose the parameters so that:
Assumption 1: For some , a 11 + a 21 = ; a 12 + a 22... data-page="2">
32.1 Non-negativity of Y
dY = dX + dX 2
= ( a 11 X + a 12 X + b ) dt + ( a 21 X + a 22 X + b ) dt
+p
Y