1. Trang chủ
  2. » Giáo Dục - Đào Tạo

A two-factor model (Duffie & Kan)

6 398 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề A two-factor model (Duffie & Kan)
Tác giả Duffie, Kan
Chuyên ngành Financial Mathematics
Định dạng
Số trang 6
Dung lượng 123,39 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Since the coefficients in SDE1 and SDE2 do not depend on time, the bond price depends ontandT only through their difference = T,t.. We compute its stochastic differential and set thedtte

Trang 1

A two-factor model (Duffie & Kan)

Let us define:

X 1 ( t ) =Interest rate at timet

X 2 ( t ) =Yield at timeton a bond maturing at timet +  0

LetX 1 (0) > 0,X 2 (0) > 0be given, and letX 1 ( t ) andX 2 ( t )be given by the coupled stochastic

differential equations

dX 1 ( t ) = ( a 11 X 1 ( t ) + a 12 X 2 ( t ) + b 1 ) dt +  1

q

1 X 1 ( t ) + 2 X 2 ( t ) + dW 1 ( t ) ; (SDE1)

dX 2 ( t ) = ( a 21 X 1 ( t ) + a 22 X 2 ( t ) + b 2 ) dt +  2

q

1 X 1 ( t ) + 2 X 2 ( t ) + (  dW 1 ( t ) +q

1, 2 dW 2 ( t )) ;

(SDE2) whereW 1 andW 2are independent Brownian motions To simplify notation, we define

Y ( t ) 4

= 1 X 1 ( t ) + 2 X 2 ( t ) + ;

W 3 ( t ) 4

= W 1 ( t ) +q

1, 2 W 2 ( t ) :

ThenW 3is a Brownian motion with

dW 1 ( t ) dW 3 ( t ) =  dt;

and

dX 1 dX 1 =  21 Y dt; dX 2 dX 2 =  22 Y dt; dX 1 dX 2 =  1  2 Y dt:

319

Trang 2

32.1 Non-negativity of Y

dY = 1 dX 1 + 2 dX 2

= ( 1 a 11 X 1 + 1 a 12 X 2 + 1 b 1 ) dt + ( 2 a 21 X 1 + 2 a 22 X 2 + 2 b 2 ) dt

+p

Y ( 1  1 dW 1 + 2  2 dW 1 + 2

q

1, 2  2 dW 2 )

= [( 1 a 11 + 2 a 21 ) X 1 + ( 1 a 12 + 2 a 22 ) X 2 ] dt + ( 1 b 1 + 2 b 2 ) dt

+ ( 21  21 + 2 1 2  1  2 + 22  22 ) 1 2q

Y ( t ) dW 4 ( t ) where

W 4 ( t ) = ( 1  1 + 2  2 ) W 1 ( t ) + 2p

1, 2  2 W 2 ( t )

q

21  21 + 2 1 2  1  2 + 22  22

is a Brownian motion We shall choose the parameters so that:

Assumption 1: For some , 1 a 11 + 2 a 21 = 1 ; 1 a 12 + 2 a 22 = 2 :

Then

dY = [ 1 X 1 + 2 X 2 + ] dt + ( 1 b 1 + 2 b 2, ) dt

+ ( 21  21 + 2 1 2  1  2 + 22  22 ) 1 2p

Y dW 4

= + ( 1 b 1 + 2 b 2, ) dt + ( 21  21 + 2 1 2  1  2 + 22  22 ) 1 2p

Y dW 4 :

From our discussion of the CIR process, we recall thatY will stay strictly positive provided that:

Assumption 2: Y (0) = 1 X 1 (0) + 2 X 2 (0) + > 0 ;

and

Assumption 3: 1 b 1 + 2 b 2, 

1

2 ( 21  21 + 2 1 2  1  2 + 22  22 ) :

Under Assumptions 1,2, and 3,

Y ( t ) > 0 ; 0t <1; almost surely, and (SDE1) and (SDE2) make sense These can be rewritten as

dX 1 ( t ) = ( a 11 X 1 ( t ) + a 12 X 2 ( t ) + b 1 ) dt +  1

q

Y ( t ) dW 1 ( t ) ; (SDE1’)

dX 2 ( t ) = ( a 21 X 1 ( t ) + a 22 X 2 ( t ) + b 2 ) dt +  2

q

Y ( t ) dW 3 ( t ) : (SDE2’)

Trang 3

32.2 Zero-coupon bond prices

The value at timetT of a zero-coupon bond paying $1 at timeT is

B ( t;T ) = IE

"

exp

(

,

Z T

t X 1 ( u ) du

)

F( t )

# :

Since the pair ( X 1 ;X 2 ) of processes is Markov, this is random only through a dependence on

X 1 ( t ) ;X 2 ( t ) Since the coefficients in (SDE1) and (SDE2) do not depend on time, the bond price depends ontandT only through their difference = T,t Thus, there is a functionB ( x 1 ;x 2 ; )

of the dummy variablesx 1 ;x 2and, so that

B ( X 1 ( t ) ;X 2 ( t ) ;T,t ) = IE

"

exp

(

,

Z T

t X 1 ( u ) du

)

F( t )

# :

The usual tower property argument shows that

exp ,

Z t

0 X 1 ( u ) du

B ( X 1 ( t ) ;X 2 ( t ) ;T ,t )

is a martingale We compute its stochastic differential and set thedtterm equal to zero

d

exp

,

Z t

0 X 1 ( u ) du

B ( X 1 ( t ) ;X 2 ( t ) ;T ,t )

= exp

,

Z t

0 X 1 ( u ) du 

,X 1 B dt + B x1 dX 1 + B x2 dX 2,B  dt

+ 1 2 B x1x1 dX 1 dX 1 + B x1x2 dX 1 dX 2 + 1 2 B x2x2 dX 2 dX 2



= exp

,

Z t

0 X 1 ( u ) du 

,X 1 B + ( a 11 X 1 + a 12 X 2 + b 1 ) B x1+ ( a 21 X 1 + a 22 X 2 + b 2 ) B x2

,B 

+ 1 2  21 Y B x1x1 +  1  2 Y B x1x2 + 1 2  22 Y B x2x2

 dt

+  1

p

Y B x1 dW 1 +  2

p

Y B x2 dW 3



The partial differential equation forB ( x 1 ;x 2 ; )is

,x 1 B,B  +( a 11 x 1 + a 12 x 2 + b 1 ) B x1+( a 21 x 1 + a 22 x 2 + b 2 ) B x2+ 1 2  21 ( 1 x 1 + 2 x 2 + ) B x1x1

+  1  2 ( 1 x 1 + 2 x 2 + ) B x1x2 + 1 2  22 ( 1 x 1 + 2 x 2 + ) B x2x2 = 0 : (PDE)

We seek a solution of the form

B ( x 1 ;x 2 ; ) = expf,x 1 C 1 (  ),x 2 C 2 (  ),A (  )g;

valid for all 0and allx 1 ;x 2satisfying

Trang 4

We must have

B ( x 1 ;x 2 ; 0) = 1 ; 8x 1 ;x 2 satisfying (*);

because = 0corresponds tot = T This implies the initial conditions

C 1 (0) = C 2 (0) = A (0) = 0 : (IC)

We want to findC 1 (  ) ;C 2 (  ) ;A (  )for > 0 We have

B  ( x 1 ;x 2 ; ) =

,x 1 C0

1 (  ),x 2 C0

2 (  ),A0

(  )

B ( x 1 ;x 2 ; ) ;

B x1( x 1 ;x 2 ; ) =,C 1 (  ) B ( x 1 ;x 2 ; ) ;

B x2( x 1 ;x 2 ; ) =,C 2 (  ) B ( x 1 ;x 2 ; ) ;

B x1x1( x 1 ;x 2 ; ) = C 21 (  ) B ( x 1 ;x 2 ; ) ;

B x1x2( x 1 ;x 2 ; ) = C 1 (  ) C 2 (  ) B ( x 1 ;x 2 ; ) ;

B x2x2( x 1 ;x 2 ; ) = C 22 (  ) B ( x 1 ;x 2 ; ) :

(PDE) becomes

0 = B ( x 1 ;x 2 ; )

,x 1 + x 1 C0

1 (  ) + x 2 C0

2 (  ) + A0(  ),( a 11 x 1 + a 12 x 2 + b 1 ) C 1 (  )

,( a 21 x 1 + a 22 x 2 + b 2 ) C 2 (  ) + 1 2  21 ( 1 x 1 + 2 x 2 + ) C 21 (  ) +  1  2 ( 1 x 1 + 2 x 2 + ) C 1 (  ) C 2 (  ) + 1 2  22 ( 1 x 1 + 2 x 2 + ) C 22 (  )

= x 1 B ( x 1 ;x 2 ; )

,1 + C0

1 (  ),a 11 C 1 (  ),a 21 C 2 (  ) + 1 2  21 1 C 21 (  ) +  1  2 1 C 1 (  ) C 2 (  ) + 1 2  22 1 C 22 (  )

+ x 2 B ( x 1 ;x 2 ; )



C0

2 (  ),a 12 C 1 (  ),a 22 C 2 (  ) + 1 2  21 2 C 21 (  ) +  1  2 2 C 1 (  ) C 2 (  ) + 1 2  22 2 C 22 (  )

+ B ( x 1 ;x 2 ; )

A0(  ),b 1 C 1 (  ),b 2 C 2 (  ) + 1 2  21 C 21 (  ) +  1  2 C 1 (  ) C 2 (  ) + 1 2  22 C 22 (  )

We get three equations:

C0

1 (  ) = 1 + a 11 C 1 (  ) + a 21 C 2 (  ),1 2  21 1 C 21 (  ), 1  2 1 C 1 (  ) C 2 (  ),1 2  22 1 C 22 (  ) ;

(1)

C 1 (0) = 0;

C0

2 (  ) = a 12 C 1 (  ) + a 22 C 2 (  ),1 2  21 2 C 21 (  ), 1  2 2 C 1 (  ) C 2 (  ),1 2  22 2 C 22 (  ) ; (2)

C 2 (0) = 0;

A0

(  ) = b 1 C 1 (  ) + b 2 C 2 (  ),1 2  21 C 21 (  ), 1  2 C 1 (  ) C 2 (  ),1 2  22 C 22 (  ) ; (3)

A (0) = 0;

Trang 5

We first solve (1) and (2) simultaneously numerically, and then integrate (3) to obtain the function

A (  )

32.3 Calibration

Let 0 > 0be given The value at timetof a bond maturing at timet +  0is

B ( X 1 ( t ) ;X 2 ( t ) ; 0 ) = expf,X 1 ( t ) C 1 (  0 ),X 2 ( t ) C 2 (  0 ),A (  0 )g

and the yield is

,

1

 0 log B ( X 1 ( t ) ;X 2 ( t ) ; 0 ) = 1  0 [ X 1 ( t ) C 1 (  0 ) + X 2 ( t ) C 2 (  0 ) + A (  0 )] :

But we have set up the model so thatX 2 ( t )is the yield at timetof a bond maturing at timet +  0 Thus

X 2 ( t ) = 1  0 [ X 1 ( t ) C 1 (  0 ) + X 2 ( t ) C 2 (  0 ) + A (  0 )] :

This equation must hold for every value ofX 1 ( t )andX 2 ( t ), which implies that

C 1 (  0 ) = 0 ; C 2 (  0 ) =  0 ; A (  ) = 0 :

We must choose the parameters

a 11 ;a 12 ;b 1 ; a 21 ;a 22 ;b 2 ; 1 ; 2 ; ;  1 ;; 2 ;

so that these three equations are satisfied

...

and

dX dX =  21 Y dt; dX dX =  22 Y dt; dX dX =   Y dt:

319

Trang 2

32.1...

q

21  21 + 2   + 22  22

is a Brownian motion We shall choose the parameters so that:

Assumption 1: For some , a 11 + a 21 = ; a 12 + a 22... data-page="2">

32.1 Non-negativity of Y

dY = dX + dX 2

= ( a 11 X + a 12 X + b ) dt + ( a 21 X + a 22 X + b ) dt

+p

Y

Ngày đăng: 18/10/2013, 02:20

TỪ KHÓA LIÊN QUAN