1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Hull and White model

10 252 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Hull and White model
Thể loại Chapter
Định dạng
Số trang 10
Dung lượng 138,07 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

We can solve the stochastic differential equation... From assumption 3, we have the initial condition 0.. We can solve the equation numerically to determine the function t ; 0tT.. Rem

Trang 1

Hull and White model

Consider

dr ( t ) = ( ( t ), ( t ) r ( t )) dt +  ( t ) dW ( t ) ;

where ( t ), ( t )and ( t )are nonrandom functions oft

We can solve the stochastic differential equation Set

K ( t ) =Z t

0 ( u ) du:

Then

d

e K(t) r ( t )

= e K(t)

( t ) r ( t ) dt + dr ( t )

= e K(t) ( ( t ) dt +  ( t ) dW ( t )) :

Integrating, we get

e K(t) r ( t ) = r (0)+Z t

0 e K(u) ( u ) du +Z t

0 e K(u)  ( u ) dW ( u ) ;

so

r ( t ) = e,K(t)

r (0) +Z t

0 e K(u) ( u ) du +Z t

0 e K(u)  ( u ) dW ( u )

:

From Theorem 1.69 in Chapter 29, we see thatr ( t )is a Gaussian process with mean function

m r ( t ) = e,K(t)

r (0) +Z t

0 e K(u) ( u ) du

(0.1) and covariance function

 r ( s;t ) = e,K(s),K(t)Z s^t

The processr ( t )is also Markov

293

Trang 2

We want to study 0 T r ( t ) dt To do this, we define

X ( t ) =Z t

0 e K(u)  ( u ) dW ( u ) ; Y ( T ) =Z T

0 e,K(t) X ( t ) dt:

Then

r ( t ) = e,K(t)

r (0) +Z t

0 e K(u) ( u ) du

+ e,K(t) X ( t ) ;

Z T

0 r ( t ) dt =Z T

0 e,K(t)

r (0) +Z t

0 e K(u) ( u ) du

dt + Y ( T ) :

According to Theorem 1.70 in Chapter 29,

R0 T r ( t ) dtis normal Its mean is

IEZ T

0 r ( t ) dt =Z T

0 e,K(t)

r (0) +Z t

0 e K(u) ( u ) du

and its variance is

var Z T

0 r ( t ) dt

!

= IEY 2 ( T )

=Z T

0 e 2K(v)  2 ( v ) Z T

v e,K(y) dy

!2 dv:

The price at time 0 of a zero-coupon bond paying $1 at timeT is

B (0 ;T ) = IE exp

( ,

Z T

0 r ( t ) dt

)

= exp

(

(,1) IEZ T

0 r ( t ) dt + 1 2 (,1) 2 var Z T

0 r ( t ) dt

!)

= exp

,r (0)Z T

0 e,K(t) dt,

Z T 0

Z t

0 e,K(t)+K(u) ( u ) du dt

+ 1 2

Z T

0 e 2K(v)  2 ( v ) Z T

v e,K(y) dy

!2

dv

= expf,r (0) C (0 ;T ),A (0 ;T )g;

where

C (0 ;T ) =Z T

0 e,K(t) dt;

A (0 ;T ) =Z T

0

Z t

0 e,K(t)+K(u) ( u ) du dt,1 2Z T

0 e 2K(v)  2 ( v ) Z T

v e,K(y) dy

!2 dv:

Trang 3

t

u = t

T

Figure 30.1: Range of values ofu;tfor the integral.

Note that (see Fig 30.1)

Z T 0

Z t

0 e,K(t)+K(u) ( u ) du dt

=Z T 0

Z T

u e,K(t)+K(u) ( u ) dt du

( y = t ; v = u ) =Z T

0 e K(v) ( v ) Z T

v e,K(y) dy

!

dv:

Therefore,

A (0 ;T ) =Z T

0

2

4e K(v) ( v ) Z T

v e,K(y) dy

! ,1 2 e 2K(v)  2 ( v ) Z T

v e,K(y) dy

!23

5 dv;

C (0 ;T ) =Z T

0 e,K(y) dy;

B (0 ;T ) = expf,r (0) C (0 ;T ),A (0 ;T )g:

Consider the price at timet2[0 ;T ]of the zero-coupon bond:

B ( t;T ) = IE

"

exp

( ,

Z T

t r ( u ) du

)

F( t )

#

:

Becauseris a Markov process, this should be random only through a dependence onr ( t ) In fact,

B ( t;T ) = exp r ( t ) C ( t;T ) A ( t;T ) ;

Trang 4

A ( t;T ) =Z T

t

2

4e K(v) ( v ) Z T

v e,K(y) dy

! ,1 2 e 2K(v)  2 ( v ) Z T

v e,K(y) dy

!23

5 dv;

C ( t;T ) = e K(t)Z T

t e,K(y) dy:

The reason for these changes is the following We are now taking the initial time to betrather than zero, so it is plausible that

R0 T ::: dvshould be replaced by

RT

t ::: dv:Recall that

K ( v ) =Z v

0 ( u ) du;

and this should be replaced by

K ( v ),K ( t ) =Z v

t ( u ) du:

Similarly,K ( y ) should be replaced byK ( y ),K ( t ) Making these replacements inA (0 ;T ), we see that theK ( t )terms cancel InC (0 ;T ), however, theK ( t )term does not cancel

LetC t ( t;T )andA t ( t;T )denote the partial derivatives with respect tot From the formula

B ( t;T ) = expf,r ( t ) C ( t;T ),A ( t;T )g;

we have

dB ( t;T ) = B ( t;T )h

,C ( t;T ) dr ( t ),1 2 C 2 ( t;T ) dr ( t ) dr ( t ),r ( t ) C t ( t;T ) dt,A t ( t;T ) dti

= B ( t;T )

,C ( t;T )( ( t ), ( t ) r ( t )) dt

,C ( t;T )  ( t ) dW ( t ),1 2 C 2 ( t;T )  2 ( t ) dt

,r ( t ) C t ( t;T ) dt,A t ( t;T ) dt

:

Because we have used the risk-neutral pricing formula

B ( t;T ) = IE

"

exp

( ,

Z T

t r ( u ) du

)

F( t )

#

to obtain the bond price, its differential must be of the form

dB ( t;T ) = r ( t ) B ( t;T ) dt + ( ::: ) dW ( t ) :

Trang 5

Therefore, we must have

,C ( t;T )( ( t ), ( t ) r ( t )),1 2 C 2 ( t;T )  2 ( t ),r ( t ) C t ( t;T ),A t ( t;T ) = r ( t ) :

We leave the verification of this equation to the homework After this verification, we have the formula

dB ( t;T ) = r ( t ) B ( t;T ) dt, ( t ) C ( t;T ) B ( t;T ) dW ( t ) :

In particular, the volatility of the bond price is ( t ) C ( t;T )

Recall:

dr ( t ) = ( ( t ), ( t ) r ( t )) dt +  ( t ) dB ( t ) ;

K ( t ) =Z t

0 ( u ) du;

A ( t;T ) =Z T

t

2

4e K(v) ( v ) Z T

v e,K(y) dy

! ,

1

2 e 2K(v)  2 ( v ) Z T

v e,K(y) dy

!23

5 dv;

C ( t;T ) = e K(t)Z T

t e,K(y) dy;

B ( t;T ) = expf,r ( t ) C ( t;T ),A ( t;T )g:

Suppose we obtainB (0 ;T )for allT 2[0 ;T]from market data (with some interpolation) Can we determine the functions ( t ), ( t ), and ( t )for allt2[0 ;T]? Not quite Here is what we can do

We take the following input data for the calibration:

1 B (0 ;T ) ; 0T T

;

2 r (0);

3 (0);

4  ( t ) ; 0tT

(usually assumed to be constant);

5  (0) C (0 ;T ) ; 0T T

, i.e., the volatility at time zero of bonds of all maturities

Step 1 From 4 and 5 we solve for

C (0 ;T ) =Z T

0 e,K(y) dy:

Trang 6

We can then compute

@

@T C (0 ;T ) = e,K(T)

=) K ( T ) =,log @

@T C (0 ;T ) ;

@

@T K ( T ) = @T @

Z T

0 ( u ) du = ( T ) :

We now have ( T )for allT 2[0 ;T]

Step 2 From the formula

B (0 ;T ) = expf,r (0) C (0 ;T ),A (0 ;T )g;

we can solve forA (0 ;T )for allT 2[0 ;T] Recall that

A (0 ;T ) =Z T

0

2

4e K(v) ( v ) Z T

v e,K(y) dy

! ,1 2 e 2K(v)  2 ( v ) Z T

v e,K(y) dy

!23

5 dv:

We can use this formula to determine ( T ) ; 0T T

as follows:

@

@T A (0 ;T ) =

Z T 0

"

e K(v) ( v ) e,K(T),e 2K(v)  2 ( v ) e,K(T) Z T

v e,K(y) dy

!#

dv;

e K(T) @

@T A (0 ;T ) =

Z T 0

"

e K(v) ( v ),e 2K(v)  2 ( v ) Z T

v e,K(y) dy

!#

dv;

@

@T



e K(T) @

@T A (0 ;T )



= e K(T) ( T ),

Z T

0 e 2K(v)  2 ( v ) e,K(T) dv;

e K(T) @

@T



e K(T) @

@T A (0 ;T )



= e 2K(T) ( T ),

Z T

0 e 2K(v)  2 ( v ) dv;

@

@T



e K(T) @

@T



e K(T) @

@T A (0 ;T )



= 0( T ) e 2K(T) + 2 ( T ) ( T ) e 2K(T),e 2K(T)  2 ( T ) ; 0T T:

This gives us an ordinary differential equation for , i.e.,

0( t ) e 2K(t) + 2 ( t ) ( t ) e 2K(t),e 2K(t)  2 ( t ) =known function oft:

From assumption 4 and step 1, we know all the coefficients in this equation From assumption 3,

we have the initial condition (0) We can solve the equation numerically to determine the function

( t ) ; 0tT

Remark 30.1 The derivation of the ordinary differential equation for ( t ) requires three

differ-entiations Differentiation is an unstable procedure, i.e., functions which are close can have very

different derivatives Consider, for example,

f ( x ) = 0 8x2IR;

g ( x ) = sin(1000 x )

100 8x2IR:

Trang 7

jf ( x ),g ( x )j 

1

100 8x2IR;

but because

g0( x ) = 10cos(1000 x ) ;

we have

jf0

( x ),g0

( x )j= 10

for many values ofx

Assumption 5 for the calibration was that we know the volatility at time zero of bonds of all maturi-ties These volatilities can be implied by the prices of options on bonds We consider now how the model prices options

Consider a European call option on a zero-coupon bond with strike priceKand expiration timeT 1 The bond matures at timeT 2 > T 1 The price of the option at time 0 is

IE

e,

RT1

0 r(u) du ( B ( T 1 ;T 2 ),K ) +

= IEe,

RT1

0 r(u) du (expf,r ( T 1 ) C ( T 1 ;T 2 ),A ( T 1 ;T 2 )g ,K ) + :

=Z

1

,1

Z 1

,1

e,x

expf,yC ( T 1 ;T 2 ),A ( T 1 ;T 2 )g ,K+

f ( x;y ) dx dy;

wheref ( x;y )is the joint density of



RT1

0 r ( u ) du; r ( T 1 )

We observed at the beginning of this Chapter (equation (0.3)) that

RT1

0 r ( u ) duis normal with

 1 4

= IE

"

Z T1

0 r ( u ) du

#

=Z T1

0 IEr ( u ) du

=Z T1

0



r (0) e,K(v) + e,K(v)Z v

0 e K(u) ( u ) du

dv;

 21 4

= var

"

Z T1

0 r ( u ) du

#

=Z T1

0 e 2K(v)  2 ( v ) Z T1

v e,K(y) dy

!2 dv:

We also observed (equation (0.1)) thatr ( T 1 )is normal with

 2 4

= IEr ( T 1 ) = r (0) e,K(T1) + e,K(T1)Z T1

0 e K(u) ( u ) du;

 22 4

= var( r ( T 1 )) = e,2K(T1)Z T1

0 e 2K(u)  2 ( u ) du:

Trang 8

In fact, 0 T r ( u ) du; r ( T 1 ) is jointly normal, and the covariance is

 1  2 = IE

"

Z T1

0 ( r ( u ),IEr ( u )) du: ( r ( T 1 ),IEr ( T 1 ))

#

=Z T1

0 IE [( r ( u ),IEr ( u )) ( r ( T 1 ),IEr ( T 1 ))] du

=Z T1

0  r ( u;T 1 ) du;

where r ( u;T 1 )is defined in Equation 0.2

The option on the bond has price at time zero of

Z

1

,1

Z

1

,1

e,x

expf,yC ( T 1 ;T 2 ),A ( T 1 ;T 2 )g ,K+



1

2  1  2p

1, 2 exp

( ,

1 2(1, 2 )

"

x 2

 21 + 2  xy 1  2 + y 2

 22

#)

dx dy: (4.1)

The price of the option at timet2[0 ;T 1 ]is

IE

e,

RT1

t r(u) du ( B ( T 1 ;T 2 ),K ) +

F( t )

= IE

e,

RT1

t r(u) du (expf,r ( T 1 ) C ( T 1 ;T 2 ),A ( T 1 ;T 2 )g ,K ) +

F( t )

 (4.2)

Because of the Markov property, this is random only through a dependence onr ( t ) To compute this option price, we need the joint distribution of



RT1

t r ( u ) du; r ( T 1 )

conditioned onr ( t ) This

Trang 9

pair of random variables has a jointly normal conditional distribution, and

 1 ( t ) = IE

"

Z T1

t r ( u ) du

F( t )

#

=Z T1

t



r ( t ) e,K(v)+K(t) + e,K(v)Z v

t e K(u) ( u ) du

dv;

 21 ( t ) = IE

2 4

Z T1

t r ( u ) du, 1 ( t )

!2

F( t )

3 5

=Z T1

t e 2K(v)  2 ( v ) Z T1

v e,K(y) dy

!2 dv;

 2 ( t ) = IE

r ( T 1 )

r ( t )

= r ( t ) e,K(T1)+K(t) + e,K(T1)Z T1

t e K(u) ( u ) du;

 22 ( t ) = IE

( r ( T 1 ), 2 ( t )) 2

F( t )

= e,2K(T1)Z T1

t e 2K(u)  2 ( u ) du;

 ( t )  1 ( t )  2 ( t ) = IE

"

Z T1

t r ( u ) du, 1 ( t )

!

( r ( T 1 ), 2 ( t ))

F( t )

#

=Z T1

t e,K(u),K(T1)Z u

t e 2K(v)  2 ( v ) dv du:

The variances and covariances are not random The means are random through a dependence on

r ( t )

Advantages of the Hull & White model:

1 Leads to closed-form pricing formulas

2 Allows calibration to fit initial yield curve exactly

Short-comings of the Hull & White model:

1 One-factor, so only allows parallel shifts of the yield curve, i.e.,

B ( t;T ) = expf,r ( t ) C ( t;T ),A ( t;T )g;

so bond prices of all maturities are perfectly correlated

2 Interest rate is normally distributed, and hence can take negative values Consequently, the bond price

B ( t;T ) = IE

"

exp

( ,

Z T

t r ( u ) du

)

F( t )

#

can exceed 1

... du:

The variances and covariances are not random The means are random through a dependence on

r ( t )

Advantages of the Hull & White model:

1 Leads to...

2 Allows calibration to fit initial yield curve exactly

Short-comings of the Hull & White model:

1 One-factor, so only allows parallel shifts of the yield curve, i.e.,

B... class="text_page_counter">Trang 9

pair of random variables has a jointly normal conditional distribution, and< /p>

 ( t ) = IE

"

Z

Ngày đăng: 18/10/2013, 03:20

TỪ KHÓA LIÊN QUAN