We can solve the stochastic differential equation... From assumption 3, we have the initial condition 0.. We can solve the equation numerically to determine the function t ; 0tT.. Rem
Trang 1Hull and White model
Consider
dr ( t ) = ( ( t ), ( t ) r ( t )) dt + ( t ) dW ( t ) ;
where ( t ), ( t )and ( t )are nonrandom functions oft
We can solve the stochastic differential equation Set
K ( t ) =Z t
0 ( u ) du:
Then
d
e K(t) r ( t )
= e K(t)
( t ) r ( t ) dt + dr ( t )
= e K(t) ( ( t ) dt + ( t ) dW ( t )) :
Integrating, we get
e K(t) r ( t ) = r (0)+Z t
0 e K(u) ( u ) du +Z t
0 e K(u) ( u ) dW ( u ) ;
so
r ( t ) = e,K(t)
r (0) +Z t
0 e K(u) ( u ) du +Z t
0 e K(u) ( u ) dW ( u )
:
From Theorem 1.69 in Chapter 29, we see thatr ( t )is a Gaussian process with mean function
m r ( t ) = e,K(t)
r (0) +Z t
0 e K(u) ( u ) du
(0.1) and covariance function
r ( s;t ) = e,K(s),K(t)Z s^t
The processr ( t )is also Markov
293
Trang 2We want to study 0 T r ( t ) dt To do this, we define
X ( t ) =Z t
0 e K(u) ( u ) dW ( u ) ; Y ( T ) =Z T
0 e,K(t) X ( t ) dt:
Then
r ( t ) = e,K(t)
r (0) +Z t
0 e K(u) ( u ) du
+ e,K(t) X ( t ) ;
Z T
0 r ( t ) dt =Z T
0 e,K(t)
r (0) +Z t
0 e K(u) ( u ) du
dt + Y ( T ) :
According to Theorem 1.70 in Chapter 29,
R0 T r ( t ) dtis normal Its mean is
IEZ T
0 r ( t ) dt =Z T
0 e,K(t)
r (0) +Z t
0 e K(u) ( u ) du
and its variance is
var Z T
0 r ( t ) dt
!
= IEY 2 ( T )
=Z T
0 e 2K(v) 2 ( v ) Z T
v e,K(y) dy
!2 dv:
The price at time 0 of a zero-coupon bond paying $1 at timeT is
B (0 ;T ) = IE exp
( ,
Z T
0 r ( t ) dt
)
= exp
(
(,1) IEZ T
0 r ( t ) dt + 1 2 (,1) 2 var Z T
0 r ( t ) dt
!)
= exp
,r (0)Z T
0 e,K(t) dt,
Z T 0
Z t
0 e,K(t)+K(u) ( u ) du dt
+ 1 2
Z T
0 e 2K(v) 2 ( v ) Z T
v e,K(y) dy
!2
dv
= expf,r (0) C (0 ;T ),A (0 ;T )g;
where
C (0 ;T ) =Z T
0 e,K(t) dt;
A (0 ;T ) =Z T
0
Z t
0 e,K(t)+K(u) ( u ) du dt,1 2Z T
0 e 2K(v) 2 ( v ) Z T
v e,K(y) dy
!2 dv:
Trang 3t
u = t
T
Figure 30.1: Range of values ofu;tfor the integral.
Note that (see Fig 30.1)
Z T 0
Z t
0 e,K(t)+K(u) ( u ) du dt
=Z T 0
Z T
u e,K(t)+K(u) ( u ) dt du
( y = t ; v = u ) =Z T
0 e K(v) ( v ) Z T
v e,K(y) dy
!
dv:
Therefore,
A (0 ;T ) =Z T
0
2
4e K(v) ( v ) Z T
v e,K(y) dy
! ,1 2 e 2K(v) 2 ( v ) Z T
v e,K(y) dy
!23
5 dv;
C (0 ;T ) =Z T
0 e,K(y) dy;
B (0 ;T ) = expf,r (0) C (0 ;T ),A (0 ;T )g:
Consider the price at timet2[0 ;T ]of the zero-coupon bond:
B ( t;T ) = IE
"
exp
( ,
Z T
t r ( u ) du
)
F( t )
#
:
Becauseris a Markov process, this should be random only through a dependence onr ( t ) In fact,
B ( t;T ) = exp r ( t ) C ( t;T ) A ( t;T ) ;
Trang 4A ( t;T ) =Z T
t
2
4e K(v) ( v ) Z T
v e,K(y) dy
! ,1 2 e 2K(v) 2 ( v ) Z T
v e,K(y) dy
!23
5 dv;
C ( t;T ) = e K(t)Z T
t e,K(y) dy:
The reason for these changes is the following We are now taking the initial time to betrather than zero, so it is plausible that
R0 T ::: dvshould be replaced by
RT
t ::: dv:Recall that
K ( v ) =Z v
0 ( u ) du;
and this should be replaced by
K ( v ),K ( t ) =Z v
t ( u ) du:
Similarly,K ( y ) should be replaced byK ( y ),K ( t ) Making these replacements inA (0 ;T ), we see that theK ( t )terms cancel InC (0 ;T ), however, theK ( t )term does not cancel
LetC t ( t;T )andA t ( t;T )denote the partial derivatives with respect tot From the formula
B ( t;T ) = expf,r ( t ) C ( t;T ),A ( t;T )g;
we have
dB ( t;T ) = B ( t;T )h
,C ( t;T ) dr ( t ),1 2 C 2 ( t;T ) dr ( t ) dr ( t ),r ( t ) C t ( t;T ) dt,A t ( t;T ) dti
= B ( t;T )
,C ( t;T )( ( t ), ( t ) r ( t )) dt
,C ( t;T ) ( t ) dW ( t ),1 2 C 2 ( t;T ) 2 ( t ) dt
,r ( t ) C t ( t;T ) dt,A t ( t;T ) dt
:
Because we have used the risk-neutral pricing formula
B ( t;T ) = IE
"
exp
( ,
Z T
t r ( u ) du
)
F( t )
#
to obtain the bond price, its differential must be of the form
dB ( t;T ) = r ( t ) B ( t;T ) dt + ( ::: ) dW ( t ) :
Trang 5Therefore, we must have
,C ( t;T )( ( t ), ( t ) r ( t )),1 2 C 2 ( t;T ) 2 ( t ),r ( t ) C t ( t;T ),A t ( t;T ) = r ( t ) :
We leave the verification of this equation to the homework After this verification, we have the formula
dB ( t;T ) = r ( t ) B ( t;T ) dt, ( t ) C ( t;T ) B ( t;T ) dW ( t ) :
In particular, the volatility of the bond price is ( t ) C ( t;T )
Recall:
dr ( t ) = ( ( t ), ( t ) r ( t )) dt + ( t ) dB ( t ) ;
K ( t ) =Z t
0 ( u ) du;
A ( t;T ) =Z T
t
2
4e K(v) ( v ) Z T
v e,K(y) dy
! ,
1
2 e 2K(v) 2 ( v ) Z T
v e,K(y) dy
!23
5 dv;
C ( t;T ) = e K(t)Z T
t e,K(y) dy;
B ( t;T ) = expf,r ( t ) C ( t;T ),A ( t;T )g:
Suppose we obtainB (0 ;T )for allT 2[0 ;T]from market data (with some interpolation) Can we determine the functions ( t ), ( t ), and ( t )for allt2[0 ;T]? Not quite Here is what we can do
We take the following input data for the calibration:
1 B (0 ;T ) ; 0T T
;
2 r (0);
3 (0);
4 ( t ) ; 0tT
(usually assumed to be constant);
5 (0) C (0 ;T ) ; 0T T
, i.e., the volatility at time zero of bonds of all maturities
Step 1 From 4 and 5 we solve for
C (0 ;T ) =Z T
0 e,K(y) dy:
Trang 6We can then compute
@
@T C (0 ;T ) = e,K(T)
=) K ( T ) =,log @
@T C (0 ;T ) ;
@
@T K ( T ) = @T @
Z T
0 ( u ) du = ( T ) :
We now have ( T )for allT 2[0 ;T]
Step 2 From the formula
B (0 ;T ) = expf,r (0) C (0 ;T ),A (0 ;T )g;
we can solve forA (0 ;T )for allT 2[0 ;T] Recall that
A (0 ;T ) =Z T
0
2
4e K(v) ( v ) Z T
v e,K(y) dy
! ,1 2 e 2K(v) 2 ( v ) Z T
v e,K(y) dy
!23
5 dv:
We can use this formula to determine ( T ) ; 0T T
as follows:
@
@T A (0 ;T ) =
Z T 0
"
e K(v) ( v ) e,K(T),e 2K(v) 2 ( v ) e,K(T) Z T
v e,K(y) dy
!#
dv;
e K(T) @
@T A (0 ;T ) =
Z T 0
"
e K(v) ( v ),e 2K(v) 2 ( v ) Z T
v e,K(y) dy
!#
dv;
@
@T
e K(T) @
@T A (0 ;T )
= e K(T) ( T ),
Z T
0 e 2K(v) 2 ( v ) e,K(T) dv;
e K(T) @
@T
e K(T) @
@T A (0 ;T )
= e 2K(T) ( T ),
Z T
0 e 2K(v) 2 ( v ) dv;
@
@T
e K(T) @
@T
e K(T) @
@T A (0 ;T )
= 0( T ) e 2K(T) + 2 ( T ) ( T ) e 2K(T),e 2K(T) 2 ( T ) ; 0T T:
This gives us an ordinary differential equation for, i.e.,
0( t ) e 2K(t) + 2 ( t ) ( t ) e 2K(t),e 2K(t) 2 ( t ) =known function oft:
From assumption 4 and step 1, we know all the coefficients in this equation From assumption 3,
we have the initial condition (0) We can solve the equation numerically to determine the function
( t ) ; 0tT
Remark 30.1 The derivation of the ordinary differential equation for ( t ) requires three
differ-entiations Differentiation is an unstable procedure, i.e., functions which are close can have very
different derivatives Consider, for example,
f ( x ) = 0 8x2IR;
g ( x ) = sin(1000 x )
100 8x2IR:
Trang 7jf ( x ),g ( x )j
1
100 8x2IR;
but because
g0( x ) = 10cos(1000 x ) ;
we have
jf0
( x ),g0
( x )j= 10
for many values ofx
Assumption 5 for the calibration was that we know the volatility at time zero of bonds of all maturi-ties These volatilities can be implied by the prices of options on bonds We consider now how the model prices options
Consider a European call option on a zero-coupon bond with strike priceKand expiration timeT 1 The bond matures at timeT 2 > T 1 The price of the option at time 0 is
IE
e,
RT1
0 r(u) du ( B ( T 1 ;T 2 ),K ) +
= IEe,
RT1
0 r(u) du (expf,r ( T 1 ) C ( T 1 ;T 2 ),A ( T 1 ;T 2 )g ,K ) + :
=Z
1
,1
Z 1
,1
e,x
expf,yC ( T 1 ;T 2 ),A ( T 1 ;T 2 )g ,K+
f ( x;y ) dx dy;
wheref ( x;y )is the joint density of
RT1
0 r ( u ) du; r ( T 1 )
We observed at the beginning of this Chapter (equation (0.3)) that
RT1
0 r ( u ) duis normal with
1 4
= IE
"
Z T1
0 r ( u ) du
#
=Z T1
0 IEr ( u ) du
=Z T1
0
r (0) e,K(v) + e,K(v)Z v
0 e K(u) ( u ) du
dv;
21 4
= var
"
Z T1
0 r ( u ) du
#
=Z T1
0 e 2K(v) 2 ( v ) Z T1
v e,K(y) dy
!2 dv:
We also observed (equation (0.1)) thatr ( T 1 )is normal with
2 4
= IEr ( T 1 ) = r (0) e,K(T1) + e,K(T1)Z T1
0 e K(u) ( u ) du;
22 4
= var( r ( T 1 )) = e,2K(T1)Z T1
0 e 2K(u) 2 ( u ) du:
Trang 8In fact, 0 T r ( u ) du; r ( T 1 ) is jointly normal, and the covariance is
1 2 = IE
"
Z T1
0 ( r ( u ),IEr ( u )) du: ( r ( T 1 ),IEr ( T 1 ))
#
=Z T1
0 IE [( r ( u ),IEr ( u )) ( r ( T 1 ),IEr ( T 1 ))] du
=Z T1
0 r ( u;T 1 ) du;
where r ( u;T 1 )is defined in Equation 0.2
The option on the bond has price at time zero of
Z
1
,1
Z
1
,1
e,x
expf,yC ( T 1 ;T 2 ),A ( T 1 ;T 2 )g ,K+
1
2 1 2p
1, 2 exp
( ,
1 2(1, 2 )
"
x 2
21 + 2 xy 1 2 + y 2
22
#)
dx dy: (4.1)
The price of the option at timet2[0 ;T 1 ]is
IE
e,
RT1
t r(u) du ( B ( T 1 ;T 2 ),K ) +
F( t )
= IE
e,
RT1
t r(u) du (expf,r ( T 1 ) C ( T 1 ;T 2 ),A ( T 1 ;T 2 )g ,K ) +
F( t )
(4.2)
Because of the Markov property, this is random only through a dependence onr ( t ) To compute this option price, we need the joint distribution of
RT1
t r ( u ) du; r ( T 1 )
conditioned onr ( t ) This
Trang 9pair of random variables has a jointly normal conditional distribution, and
1 ( t ) = IE
"
Z T1
t r ( u ) du
F( t )
#
=Z T1
t
r ( t ) e,K(v)+K(t) + e,K(v)Z v
t e K(u) ( u ) du
dv;
21 ( t ) = IE
2 4
Z T1
t r ( u ) du, 1 ( t )
!2
F( t )
3 5
=Z T1
t e 2K(v) 2 ( v ) Z T1
v e,K(y) dy
!2 dv;
2 ( t ) = IE
r ( T 1 )
r ( t )
= r ( t ) e,K(T1)+K(t) + e,K(T1)Z T1
t e K(u) ( u ) du;
22 ( t ) = IE
( r ( T 1 ), 2 ( t )) 2
F( t )
= e,2K(T1)Z T1
t e 2K(u) 2 ( u ) du;
( t ) 1 ( t ) 2 ( t ) = IE
"
Z T1
t r ( u ) du, 1 ( t )
!
( r ( T 1 ), 2 ( t ))
F( t )
#
=Z T1
t e,K(u),K(T1)Z u
t e 2K(v) 2 ( v ) dv du:
The variances and covariances are not random The means are random through a dependence on
r ( t )
Advantages of the Hull & White model:
1 Leads to closed-form pricing formulas
2 Allows calibration to fit initial yield curve exactly
Short-comings of the Hull & White model:
1 One-factor, so only allows parallel shifts of the yield curve, i.e.,
B ( t;T ) = expf,r ( t ) C ( t;T ),A ( t;T )g;
so bond prices of all maturities are perfectly correlated
2 Interest rate is normally distributed, and hence can take negative values Consequently, the bond price
B ( t;T ) = IE
"
exp
( ,
Z T
t r ( u ) du
)
F( t )
#
can exceed 1
... du:The variances and covariances are not random The means are random through a dependence on
r ( t )
Advantages of the Hull & White model:
1 Leads to...
2 Allows calibration to fit initial yield curve exactly
Short-comings of the Hull & White model:
1 One-factor, so only allows parallel shifts of the yield curve, i.e.,
B... class="text_page_counter">Trang 9
pair of random variables has a jointly normal conditional distribution, and< /p>
( t ) = IE
"
Z