1. Trang chủ
  2. » Giáo án - Bài giảng

ĐỀ THI HỌC SINH GIỎI TRƯỜNG

1 428 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Kỳ thi học sinh giỏi trường
Trường học Trường THCS Thị Trấn Cầu Kè
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2010-2011
Thành phố Cầu Kè
Định dạng
Số trang 1
Dung lượng 130 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Cho tam BCD vuông tại B, có BH là đường cao.. Gọi M, và K lần lượt là trung điểm của HD và BH.. Chứng minh rằng CK⊥BM.. Cho hình chữ nhật ABCD.. Kẻ BH vuông góc với AC.. Gọi M, K lần lượ

Trang 1

Phòng giáo dục – đào tạo Cầu Kè KỲ THI HỌC SINH GIỎI TRƯỜNG

NĂM HỌC 2010-2011

Trường THCS Thị Trấn Cầu Kè MÔN TOÁN LỚP 8

THỜI GIAN : 90 PHÚT (KHÔNG KỂ THỜI GIAN CHÉP ĐỀ)

ĐỀ :

BÀI 1 (2 điểm)

Tìm giá trị nhỏ nhất của đa thức sau :

(2x y+ −4) + − +(x y 3) +2(2x y+ −4)(x y− + +3) 4(3x− +1) 5

BÀI 2 (2 điểm)

Làm tính chia :

4

(x − −x 14) : (x−2)

BÀI 3 (3 điểm)

Phân tích các đa thức sau thành nhân tử :

a) x4 −5x2 +4;

b) (x y z+ + )3 − −x3 y3−z3;

c) x3 + y3+ −z3 3xyz

d) (x4 + +x 2)3 − −(x 2)3 −3(x4 + +x 2) (2 x− +2) 3(x4 + +x 2)(x−2)2

BÀI 4 (1,5 điểm)

Cho tam BCD vuông tại B, có BH là đường cao Gọi M, và K lần lượt là trung điểm của

HD và BH

Chứng minh rằng CK⊥BM

BÀI 5.(2,5 điểm)

Cho hình chữ nhật ABCD Kẻ BH vuông góc với AC Gọi M, K lần lượt là trung điểm của AD, HC Chứng minh rằng BK vuông góc với KM

Ngày đăng: 11/10/2013, 00:11

TỪ KHÓA LIÊN QUAN

w