1. Trang chủ
  2. » Giáo án - Bài giảng

Dạy đại trà đầy đủ Đại vad Hình

24 332 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đại Số Chương I: Phép Nhân Và Phép Chia Đa Thức
Người hướng dẫn Trần Thị Bớch Đào
Trường học Trường THCS Yên Hợp
Thể loại Bài Tập
Năm xuất bản 2010 - 2011
Thành phố Nghĩa Đồng
Định dạng
Số trang 24
Dung lượng 1,88 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Bài tập trong sách giáo khoa: Vì vậy, khi đọc kết quả cuối cùng chỉ việc bỏ đi một chữ số 0 tận cùng là ra số tuốicủa bạn.. Bài tập trong sách giáo khoa:Bài 16.. Viết các biểu thức sau d

Trang 1

ĐẠI SỐ

CHƯƠNG I:

PHÉP NHÂN VÀ PHÉP CHIA ĐA THỨC.

Tuần 1: § 1 NHÂN ĐƠN THỨC VỚI ĐA THỨC

I Bài tập trong sách giáo khoa:

Vì vậy, khi đọc kết quả cuối cùng chỉ việc bỏ đi một chữ số 0 tận cùng là ra số tuốicủa bạn Chẳng hạn bạn đọc là 140 thì tuổi của bạn là 14

Bài 5 ( SGK – 6).

b/ xn-1(x + y) –y(xn-1yn-1) = xn-1.x + xn-1.y – xn-1.y – y.yn-1

= xn-1+1 + xn-1.y – xn-1.y – y1+n+1

= xn - yn

Bài 6 ( SGK – 6 ) Đánh dấu “x” vào ô 2a.

II Bài tập trong Sách Bài tập:

Bµi 2 ( SBT – 3) Rót gän biÓu thøc sau:

a) x(2x2 - 3) - x2 (5x + 1) + x2 = - 3x2 - 3x

b) 3x(x - 2) - 5x(1 - x) - 8(x2 - 3) = = - 11x + 24

Bµi 3 ( SBT – 3) TÝnh gi¸ trÞ cña c¸c biÓu thøc sau:

Trang 2

- 13x = 26 ⇒ x = - 2

§ 2 NHÂN ĐA THỨC VỚI ĐA THỨC

I Bài tập trong sách giáo khoa:

2x3 – x2 + 3

2x – 5x2 + 10x – 15 = 1

Trang 3

a, x = 0 Gi¸ trÞ biÓu thøc lµ: - 15; b, x = 15 Gi¸ trÞ biÓu thøc lµ: - 30

c, x = -15 Gi¸ trÞ biÓu thøc lµ: 0; d, x = 0,15 Gi¸ trÞ biÓu thøc lµ: - 15,15

Bµi 9 ( SBT – 4 ): Cho a vµ b lµ hai sè tù nhiªn nÕu a ghia cho 3 d 1, b chia cho d 2

chøng minh r»ng ab chia cho 3 d 2.

Trang 4

I Bài tập trong sách giáo khoa:

Bài 16 ( SGK – 11) Viết các biểu thức sau dưới dạng bình phương của một tổng hoặc một

Trang 5

Vậy kết quả x2 + 2xy + 4y2 = (x + 2y)2 là sai Kết quả đúng là:

a) Tại x = 5 giá trị của biểu thức là : (7 5 – 5)2 = 302 = 900

b) Tại x = 71 , giá trị của biểu thức là (7 71 - 5)2 = (- 4)2 = 16

9 8

1 ) 3 2

− +

Bài 28 (SGK – 12) Tính giá trị của biểu thức:

a) x3 + 12x2 + 48x + 64 = (x + 4)3 tại x = 6 ta có giá trị của biểu thức là: (10 + 4)3 = 203 = 1000

Trang 6

Bài 34 (SGK – 17) Rút gọn các biểu thức sau:

a, (a + b)2 – (a – b)2 = [(a + b) – (a – b)][(a + b) + (a – b)] = 2b.2a = 4ab

Thay x = 99 vào biểu thức ta đợc: (99 + 1)3 = 1003 = 1000000

Bài 38 (SGK – 17) Chứng minh các đẳng thức sau:

a) (a – b)3 = - (a - b)3

Ta có: VT = (a – b)3 = a3 – 3a2b + 3ab2 – b3 = - (b3 – 3b2a + 3ba2 – a3) = - (a - b)3

Vậy ĐT đợc chứng minh

Trang 7

II Bài tập trong sỏch bài tập:

Biến đổi vế phải ta có : (a + b)[(a - b)2 + ab]

= (a + b)(a2 - 2ab + b2+ ab)

= (a + b)(a2 - ab + b2)

= a3 + b3 ⇒VP = VT

Vậy đẳng thức đợc chứng minh

c) (a2 + b2)(c2 + d2) = (ac + bd)2 + (ad - bc)2

Biến đổi vế trái ta có : (a2 + b2)(c2 + d2) = (ac)2 +(ad)2 + (bc)2 + (bd)2

Biến đổi vế phải ta có VP : (ac + bd)2 + (ad - bc)2

= (ac)2 + 2abcd + (bd)2 +(ad)2 - 2abcd + (bc)2

Trang 8

ần 5+6+7 § 6 PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ

BẰNG PHƯƠNG PHÁP ĐẶT NHÂN TỬ CHUNG

I.Bài tập trong sách giáo khoa Bµi 39 (SGK – 19) Ph©n tÝch ®a thøc sau thµnh nh©n tö:

a) 3x – 6y = 3(x – 2y)

5

2 ( 5

5

y x x

y x x

Trang 9

Ta cã: 55n +1 – 55n = 55n(55 – 1) = 55n 54  54, víi n lµ sè tù nhiªn

§ 7 PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG PHƯƠNG PHÁP DÙNG HẰNG ĐẲNG THỨC

I.Bài tập trong sách giáo khoa

Bµi 43 (SGK – 20) Ph©n tÝch c¸c da thøuc sau thµnh nh©n tö:

4

1 4

)(

2

1 2 (

8

5

1 )(

8 5

1 ( 64 25

y x y x y

1 )(

3

1 ( 27

I.Bài tập trong sách giáo khoa

Bµi 47 (SGK – 22) Ph©n tÝch c¸c ®a thøc sau thµnh nh©n tö:

Trang 10

I.Bài tập trong sách giáo khoa

Bµi 51 (SGK – 24) Ph©n tÝch c¸c ®a thøc sau thµnh nh©n tö:

Bµi 54 (SGK – 25) Ph©n tÝch c¸c ®a thøc sau thµnh nh©n tö:

a) x3+ 2 x2y + xy2- 9x =x[(x2+2xy+y2)-9] =x[(x+y)2-32] =x[(x+y+3)(x+y-3)]

b) 2x- 2y-x2+ 2xy- y2 = 21(x-y)-(x2-2xy+x2) = 2(x-y)-(x-y)2=(x-y)(2- x+y)

2 hoÆc x=-1

2 b) (2x-1)2-(x+3)2 = 0 ⇔[(2x-1)+(x+3)][(2x-1)-(x+3)]= 0 ⇔(3x+2)(x-4) = 0

Trang 11

⇔ (3x+2) = 0⇒x=-2

3 (x- 4) = 0 ⇒x = 4

Ta có: n3 – n = n(n2 – 1) = n(n + 1)(n –1) laứ 3 soỏ tửù nhieõn lieõn tieỏp neõn chia heỏt cho 2 vaứ

3 , maứ (2; 3) = 1 neõn chia heỏt cho 2.3 = 6

Tu

ần 8 Đ 10 CHIA ĐƠN THỨC CHO ĐƠN THỨC

I.Bài tập trong sỏch giỏo khoa

3 ( : ) 4

3

8 27

(-Đ 11 CHIA ĐA THỨC CHO ĐƠN THỨC

Bài 63 (SGK – 27) Không làm tính chia, hãy xét xem đa thức A có chia hết cho đơn thức B

không:

ĐS: A chia hết cho B

Trang 12

Tuần 9: § 12 CHIA ĐA THỨC MỘT BIẾN ĐÃ SẮP XẾP

Bµi 67 (SGK – 31) S¾p xÕp c¸c ®a thøc theo luü thõa gi¶m dÇn cña biÕn råi lµm phÐp chia:

3 3

5 5

3

5 6

3 3 3

3 3

1 5

6 3

2 2 3

2 3

2 4

2 2 3

+

− +

− +

− + +

− +

+

x x

x x

x x

x x

x

x x

x x

x x

Trang 13

a) (4x2 - 9y2 ) : (2x-3y) = [(2x)2 - (3y)2] : (2x-3y)

= (2x - 3y)(2x + 3y) : (2x-3y) = 2x + 3yb) (27x3 - 1) : (3x - 1) = [(3x)3 - 1] : (3x - 1) = (3x – 1)(9x2 + 3x + 1) : (3x – 1)

c) (8x3 + 1) : (4x2 - 2x + 1) = [(2x)3 + 1] : (4x2 - 2x + 1)

=(2x + 1)( 4x2 - 2x + 1) : (4x2 - 2x + 1) = 2x + 1d) (x2 - 3x + xy - 3y) : (x + y) = [x(x - 3) + y (x - 3)] : (x + y)

= 3x2y – x y2 + x2 – 10y3 – 2xy

Bµi 77 (SGK – 33) Tính nhanh giá trị của biểu thức:

a , M = x2 + 4y2 – 4xy tại x = 18 và y = 4

M = ( x – 2y )2 = ( 18 – 2 4 ) 2 = 102 = 100

Trang 15

3 1 1

I Bài tập trong sỏch giỏo khoa:

Bài 1(SGK – 36): Dùng định nghĩa hai phân thức để chúng tỏ rằng:

Trang 16

Phải sửa là : 2(9(x−9)x3) =(9−2x)2

−Hoặc 2(9(9−x)x3) =(9−2x)2

1

(

) 1 )(

1

(

) 1 )(

1 (

) 1 ( ) 1 (

) 1 ( )

1

(

) 1 )(

1 (

1 1

3

4

2 2 3 3 4 4 5

2

5

+

+ + +

− + +

− +

− +

− +

− +

x

x

x x

x x x

x

x

x x

x x

x x

x

x

x

x x

x x x x x x x x

x

x

x

§ 3 RÚT GỌN PHÂN THỨC Bài 7.(SGK – 39): Rút gọn phân thức:

Trang 17

+ =+Câu a, d là đáp số đúng

Câu b, c là sai( Cha phân tích tử & mẫu thành nhân tử để tìm nhân tử chung mà đã rút gọn)

( ) ( ) )

5 5 5 ( ) 5 ( ) 5

x xy x x y x y x b

y xy y y x y y x x

1 )(

1

(

) 1 )(

1

(

) 1 )(

1 (

1 ) 1 ( ) 1 ( )

4 6

2 4

6

2

2 3 4 5

6

7

+ + +

= +

+ + +

+

=

+ + + + +

+

+

x

x x x x

x

x x

x

x

x x

x x x x x

x

x

x

x x x x x

2

(

) 4 4

x

x

x x

Đ 4 QUY ĐỒNG MẪU THỨC NHIỀU PHÂN THỨC

Bài 14 (SGK – 43): Quy đồng mẫu thức cỏc phõn thức:

x x

x x

x x

x x

x x

3

) 1 ( 7 ) 1 ( 3

) 1 ( 7

) 1 ( 3

) 1 2 ( 7

3 3

7 14 7

2

2 2 2

+

= +

+

=

+

+ +

= +

+ +

Trang 18

x x

x x

2

) 4 ( 3

6

x x x

x x

x x

Bài 16 (SGK – 43):

5 3 4 1

5 3

4

2

2 3

2

+ +

x x x

x

x

) 1 )(

1 (

) 1 )(

2 1 ( 1

x x x

x

x

) 1 (

2

2

3

+ +

x x

x x

+

−2x + 4 = 2 ( x +2 );

2 2

-Hai bạn đều trả lời đúng, nhưng bạn Lan tìm

ra mẫu thức chung đơn giản hơn vì bạn ấy đãrút gọn phân thức

) 2 ( 60 )

2 ( 6 ).

2 (

) 2 ( 6 10 2

10

− +

=

− +

=

x x

x

x x

) 2 ( 3 ).

2 ( 2

) 2 ( 3 5 )

2 ( 2

5 4

) 2 )(

2 ( 6

) 2 ( 15

+

+

x x

x

) 2 )(

2 ( 6

) 2 ( 2 )

2 ( 3

1 3

x

Trang 20

a) Hình 7a : Góc trong còn lại Dˆ = 3600 – (750 + 1200 + 900) = 75

Góc ngoài của tứ giác ABCD :

Trang 21

AB = AD ⇒ A nằm trên đường trung trực đoạn BD

Vậy CA là trung trực của BD

−Đây là bài tập vẽ tứ giác dựa theo cách vẽ tam giác đã được học ở lớp 7

−Ở hình 9 lần lượt vẽ hai tam giác với số đo như đã cho

−Ở hình 10 (vẽ đường chéo chia tứ giác thành hai tam giác) lần lượt vẽ tam giác thứnhất với số đo góc 700, cạnh 2cm, 4cm, sau đó vẽ tam giác thứ hai với độ dài cạnh1,5cm và 3cm

§ 2 h×nh thang Bài 7 ( SGK – 71):

Hình a: Hình thang ABCD (AB // CD) có Â + Dˆ = 1800

Trang 22

Tam giác ABC có AB = AC (gt)

Nên ∆ABC là tam giác can ⇒ Â1 = Cˆ1

Ta lại có : Â1 = Â2 (AC là phân giác Â)

Do đó : Cˆ1 = Â2

Mà Cˆ1 so le trong Â2

Vậy ABCD là hình thang

§ 3 h×nh thang c©n Bài 11 ( SGK – 74):

Đo độ dài cạnh ô vuông là 1cm Suy ra:

AB = 2cm

CD = 4cm

Bài 12 ( SGK – 74):

Hai tam giác vuông AED và BFC có :

• Dˆ = Cˆ (2 góc kề đáy hình thang cân ABCD)

Vậy ∆ AED = ∆ BFC (cạnh huyền – góc nhọn)

Bài 13 ( SGK – 74):

Hai tam giác ACD và BDC có :

⇒ BC // AD

1

1 2

Trang 23

•DC là cạnh chung

Tứ giác ABCD là hình thang cân (dựa vào dấu hiệu nhận biết)

Tứ giác EFGH là hình thang

Bài 15 ( SGK – 74):

a) Tam giác ABC cân tại A nên :

2

Aˆ180

0

1 = − ; Do đó Bˆ = Dˆ1

Mà Bˆ đồng vịDˆ1; Nên DE // BC

Vậy tứ giác BDEC là hình thang

Hình thang BDEC có Bˆ = Cˆ nên là hình thang cân

b) Biết Â= 500 suy ra:

0 0

Cˆ1 = (CE là phân giác Cˆ )

Mà Bˆ = Cˆ (∆ ABCcân)

Hai tam giác ABD và ACE có :

•Â là góc chung

•Bˆ1 = Cˆ1

Chứng minh BEDC là hình thang cân như câu a bài 15

DE // BC ⇒ Dˆ1 = Bˆ2 (so le trong)

Mà Bˆ1 = Bˆ2 (cmt)

Vậy BE = DE

Bài 17 ( SGK – 74):

Gọi E là giao điểm của AC và BD

Tam giác ECD có : Dˆ1 = Cˆ1 (do ACD = BDC)

Nên ∆ ECDlà tam giác cân ⇒ED = EC (1)

Trang 24

maứ Dˆ1 = Eˆ (∆ BDEcaõn taùi B)

Tam giaực ACD vaứ BCD coự :

Hỡnh thang ABCD coự hai goực keà moọt ủaựy baống nhau neõn laứ hỡnh thang caõn

Đ 4 đờng trung bình của tam giác

Của hình thang Bài 20 ( SGK – 79):

Tam giaực ABC coự Kˆ = Cˆ = 50 0 ; Maứ Kˆ ủoàng vũ Cˆ

Do ủoự IK // BC

Ngoaứi ra KA = KC = 8

Bài 21 ( SGK – 79):

Do C laứ trung ủieồm OA, D laứ trung ủieồm OB

⇒ CD laứ ủửụứng trung bỡnh ∆ OAB

cm 6 cm 3 2 CD 2 AB AB 2

Ngày đăng: 09/10/2013, 21:11

HÌNH ẢNH LIÊN QUAN

Hình thang ABCD có : Â - D ˆ  = 2 - Dạy đại trà đầy đủ Đại vad Hình
Hình thang ABCD có : Â - D ˆ = 2 (Trang 22)
Hình thang BDEC có  B ˆ = C ˆ  nên là hình thang cân - Dạy đại trà đầy đủ Đại vad Hình
Hình thang BDEC có B ˆ = C ˆ nên là hình thang cân (Trang 23)
Hình thang ABCD có hai góc kề một đáy bằng nhau nên là hình thang cân. - Dạy đại trà đầy đủ Đại vad Hình
Hình thang ABCD có hai góc kề một đáy bằng nhau nên là hình thang cân (Trang 24)

TỪ KHÓA LIÊN QUAN

w