1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Lecture Digital signal processing: Lecture 3 - Zheng-Hua Tan

20 42 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 1,09 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Chapter 3 introduce the z-transform. This chapter presents the following content: z-transform, properties of the ROC, inverse z-transform, properties of z-transform.

Trang 1

Digital Signal Processing, III, Zheng-Hua Tan, 2006

1

Digital Signal Processing, Fall 2006

Zheng-Hua Tan

Department of Electronic Systems Aalborg University, Denmark

zt@kom.aau.dk

Lecture 3: The z-transform

Digital Signal Processing, III, Zheng-Hua Tan, 2006

2

Course at a glance

Discrete-time signals and systems

Fourier-domain

representation

DFT/FFT

System structures

Filter structures Filter design

Filter

z-transform

MM1

MM2

MM9,MM10

MM3

MM6

MM4

Sampling and

System analysis System

Trang 2

Digital Signal Processing, III, Zheng-Hua Tan, 2006

3

Part I: z-transform

„ z-transform

Limitation of Fourier transform

„ Fourier transform

„ Condition for the convergence of the infinite sum

„ If x[n] is absolutely summable, its Fourier transform exists

(sufficient condition)

)

( 2

1 ] [

] [ ) (

−∞

=

=

=

π π

ω ω

ω ω

ω

n x

e n x e

X

n j j

n j

n j

<

−∞

=

−∞

=

−∞

n j n

n j n

e

X ( ) | | [ ] | | [ ] || | | [ ] |

: 1

|

|

) 2 ( 1

1 ) ( : 1

1

1 ) ( : 1

|

| ] [ ] [

>

+ +

=

=

=

<

=

∑∞

−∞

=

a

k e

e X a

ae e

X a n u a n x

k j j

j j

n

π ω πδ ω ω

ω ω

Trang 3

Digital Signal Processing, III, Zheng-Hua Tan, 2006

5

z-transform

„ Fourier transform

„ z-transform

„ The complex variable z in polar form

) ( ) (

r

|z| = = =

re

z =

n j

n

e

−∞

=

=

) ( ] [

] [ )

n

−∞

=

n j n n

j

re X

z

=

)

(

Digital Signal Processing, III, Zheng-Hua Tan, 2006

6

z-plane

„ z-transform is a function of a complex

variable Æ using the complex z-plane

Z-transform on unit circle

<-> Fourier transform Linear frequency axis in Fourier transform ÆUnit circle in z-transform (periodicity in freq of Fourier transform)

Trang 4

Digital Signal Processing, III, Zheng-Hua Tan, 2006

7

Region of convergence – ROC

„ Fourier transform does not converge for all

sequences

„ z-transform does not converge for all sequences or

for all values of z.

„ ROC – for any given seq., the set of values of z for

which the z-transform converges

n j n

j x n e e

X ω ∞ −ω

−∞

=

) (

<

∑∞

−∞

=

|

|

| ] [

|

n

n

z n x

∑∞

−∞

=

− < ∞

n

n

r n

x [ ] |

|

n j n

n n

n

re

−∞

=

−∞

=

X(z)

ROC is ring!

ROC

„ Outer boundary is a circle (may extend to infinity)

„ Inner boundary is a circle (may extend to include the

origin)

„ If ROC includes unit circle, Fourier transform

converges

Trang 5

Digital Signal Processing, III, Zheng-Hua Tan, 2006

9

Zeros and poles

„ The most important and useful z-transforms –

rational function:

„ Zeros: values of z for which X(z)=0.

„ Poles : values of z for which X(z) is infinite

„ Close relation between poles and ROC

z z

Q z

P

z Q

z P z X

in s polynomial are

) ( and ) (

) (

) ( )

Digital Signal Processing, III, Zheng-Hua Tan, 2006

10

Right-sided exponential sequence

„ z-transform

=

−∞

=

=

=

=

0

1) (

] [ )

(

] [

]

[

n

n n

n n n

az

z n u a z

X

n u

a

n

x

<

∑∞

=

0

1

|

|

n

n

az

1

|

| , 1

1 ]

z n

u Z

|

|

| , 1

1 ) ( )

0

a z

z az az

z

X

n

=

=

=

Trang 6

Digital Signal Processing, III, Zheng-Hua Tan, 2006

11

Left-sided exponential sequence

„ z-transform

=

−∞

=

−∞

=

=

=

=

=

0 1 1

) ( 1

] 1 [ )

(

] 1 [

]

[

n

n n

n n n

n n

n

z a z

a

z n u a z

X

n u

a

n

x

<

∑∞

=

0

1

|

|

n

n

z

a

|

|

| , 1

1

)

a z

z az

z

=

Sum of two exponential sequence

) 3

1 )(

2

1 (

) 12

1 ( 2

3

1 1 1 2

1

1

1

) 3

1 ( ) 2

1

(

)

(

] [ ) 3

1 ( ]

[

)

2

1

(

]

[

1 1

0 1 0

1

+

= +

+

=

− +

=

− +

=

=

=

− ∑

z z

z z z

z

z z

z

X

n u n

u

n

x

n

n n

n

n n

2

1

|

|

3

1

|

| and

2

1

|

|

1

| ) 3

1 (

| and 1

|

2

1

>

>

>

<

z

z z

z z

Trang 7

Digital Signal Processing, III, Zheng-Hua Tan, 2006

13

Sum of two exponential sequence

Another way to calculate:

2

1

|

| 3

1 1 1 2

1 1

1 ]

[ ) 3

1 ( ]

[

)

2

1

(

3

1

|

| , 3

1 1

1 ]

[

)

3

1

(

2

1

|

| , 2

1 1

1 ]

[

)

2

1

(

] [ ) 3

1 ( ] [ ) 2

1

(

]

[

1 1

1 1

>

+

+

− +

>

+

>

− +

=

z z

z

n u n

u

z z

n

u

z z

n

u

n u n

u n

x

Z n n

Z n

Z n

n n

Digital Signal Processing, III, Zheng-Hua Tan, 2006

14

Two-sided exponential sequence

2

1

|

| , 3

1

|

| , 2

1 1 1 3

1

1

1

)

(

2

1

|

| , 2

1 1

1 ] 1

[

)

2

1

(

3

1

|

| , 3

1 1

1 ]

[

)

3

1

(

1 1

1 1

<

>

+ +

=

<

>

+

z z

z z

z

X

z z

n

u

z z

n

u

Z n

Z

n

] 1 [ ) 2

1 ( ] [

)

3

1

(

]

) 3

1 )(

2

1

(

) 12

1 (

2

+

=

z z

z

z

Trang 8

Digital Signal Processing, III, Zheng-Hua Tan, 2006

15

Finite-length sequence

=

otherwise.

,

0

1 0

,

]

n

x

n

a z

a z z az

az

z a z

a

z

X

N N

N N

n N

n n N

n

n

=

=

=

=

=

1 1

1

1 1

0 1

0

1 1

) (

1

) ( )

(

0 and

|

|

|

|

ROC

1

0

1

<

<

∑−

=

z a

az

N

n

n

1 , , 1 ,

at

pole

1 , , 1 , 0 ,

) / 2

(

) / 2

(

=

=

=

=

=

N k

ae

z

a z

N k

ae

z

N k

j

k

N k

j

k

π

π

Some common z-transform pairs

Trang 9

Digital Signal Processing, III, Zheng-Hua Tan, 2006

17

Part II: Properties of the ROC

„ Properties of the ROC

Digital Signal Processing, III, Zheng-Hua Tan, 2006

18

Properties of the ROC

Trang 10

Digital Signal Processing, III, Zheng-Hua Tan, 2006

19

Properties of the ROC

„ The algebraic expression

or pole-zero pattern does

not completely specify

the z-transform of a

must be specified!

„ Stability, causality and

the ROC

Part III: Inverse z-transform

„ Inverse z-transform

Trang 11

Digital Signal Processing, III, Zheng-Hua Tan, 2006

21

Inverse z-transform

„ Needed for system analysis: 1) z-transform,

2) manipulation, 3) inverse z-transform.

„ Approaches:

‰ Inspection method

‰ Partial fraction expansion

‰ Power series expansion

Digital Signal Processing, III, Zheng-Hua Tan, 2006

22

Inspection method

„ By inspection, e.g.

„ Make use of

2

1

|

| ), 2

1 1

1 (

)

(

1

>

=

z z

X

? 2

1

|

|

if z <

] [ ) 2

1 ( ]

[

x n = nu n

|

|

|

| ), 1

1 (

)

az n

u

] 1 [ ) 2

1 ( ] [ course,

Trang 12

Digital Signal Processing, III, Zheng-Hua Tan, 2006

23

Partial fraction expansion

„ For rational function, get the format of a sum

of simpler terms, and then use the inspection

method.

Second-order z-transform

) 2

1 1 )(

4

1

1

(

1 )

(

1

1 −

− −

=

z z

z

X

] [ ) 4

1 ( ] [ )

2

1

(

2

]

) 2

1 1 (

2 ) 4

1

1

(

1 )

(

2

| ) ( ) 2

1

1

(

1

| ) ( ) 4

1

1

(

) 2

1 1 ( ) 4

1

1

(

)

(

1 1

2 / 1 1

2

4 / 1 1

1

1 2 1

1

=

=

+

=

=

=

=

=

+

=

z z

z

X

z X z

A

z X z

A

z

A z

A

z

X

z z

=

=

= N

k

k k

M

k

k k

z a

z b z

X

0

0

) (

= N

k z d

A z

X

1

1

1 ) (

=

=

k

k

M

k k

z d

z c a

b z X

1

1 1

1

0 0

) 1

(

) 1 ( )

(

k

d z k

A = ( )( 1 − −1) |=

2

1

|

| , 8 1 4

3

1

1

)

(

2 1

>

+

=

z z

z

X

Trang 13

Digital Signal Processing, III, Zheng-Hua Tan, 2006

25

What about M>=N?

) 1 )(

2

1 1 (

) 1 ( )

(

1 1

2 1

+

=

z z

z z

X

] [ 8 ] [ ) 2

1 ( 9 ] [ 2 ]

x = δ − n +

) 1 (

8 ) 2

1 1

(

9 2

)

(

8

| ) ( )

1

(

9

| ) ( ) 2

1

1

(

division.

long

by Found

2

) 1 ( ) 2

1 1 (

)

(

1 1

1 1

2

2 / 1 1

1

0

1 2 1

1 0

=

=

+

=

=

=

=

=

=

+

+

=

z z

z

X

z X z

A

z X z

A

B

z

A z

A B

z

X

z z

1

|

| , 2

1 2

3

1

2

1

)

(

2 1

2 1

>

+

+ +

=

z z z

z z z

X

1 5

2 3

2 1 2 1 2

3 2 1

1

1 2

1 2 1 2

+

+ + +

z

z z

z z z z

Digital Signal Processing, III, Zheng-Hua Tan, 2006

26

Power series expansion

„ By long division

] [ ]

x = n

|

|

|

| , 1

1 )

az z

1 1

az

1

1

1 1

2 2

2 2 1 1 1

2 2 1 1

+ + +

z a

z a az az az

z a az az

Trang 14

Digital Signal Processing, III, Zheng-Hua Tan, 2006

27

Finite-length sequence

1 2

1 1 1

2

2

1 1 2

1 )

(

) 1 )(

1 )(

2

1 1 (

)

(

+

=

− +

=

z z

z

z

X

z z z

z

z

X

] 1 [ 2

1 ] [ ] 1 [ 2

1 ] 2 [

]

[ n = n + − n + − n + n

Part IV: Properties of z-transform

„ Properties of z-transform

Trang 15

Digital Signal Processing, III, Zheng-Hua Tan, 2006

29

Linearity

„ Linearity

2 1 contains ROC

), ( )

( ]

[ ]

Z

R R z

bX z aX n bx

n

z z

z n

n

u

n

u

z z

z n

u

z z n

u

Z Z

Z

All , 1 1

1 ] [ ] 1 [

]

[

1

|

| , 1

]

1

[

1

|

| , 1

1

]

[

1 1 1

1 1

=

=

>

>

δ

2

1

ROC ), ( ]

[

ROC ), ( ]

[

2 2

1 1

x Z

x Z

R z

X

n

x

R z

X

n

x

=

=

n

z n x z

−∞

=

=

at least

Digital Signal Processing, III, Zheng-Hua Tan, 2006

30

Time shifting

„ Example

) 4

1 1

1 ( ] 1 [ ) 4

1 (

4

1 1

1 ] [ ) 4

1 (

) 4

1 1

1 ( 4

1 1 ) (

4

1

|

| , 4 1

1 ) (

1 1

1

1

1 1

1 1

=

=

>

=

z z

n u

z n

u

z

z z

z z X

z z

z X

Z n

Z n

)

or 0 for (except ROC

), ( ]

[

1

0 0

=

x

n Z

R

z X z n

n

n

z n x z

−∞

=

=

Trang 16

Digital Signal Processing, III, Zheng-Hua Tan, 2006

31

Multiplication by exponential sequence

„ Examples

a z az

a z n

u

a

z z

n

u

Z

n

Z

>

=

>

|

| , 1

1 )

/ ( 1

1 ]

[

1

|

| , 1

1 ]

[

1 1

1

) (

]

[

ROC ), / ( ]

[

) (

0 0

0

0

=

j F n

j

x

Z

n

e X n

x

e

|R

|z z

z X n

x

n

z n x z

−∞

=

=

1

|

| , cos

2 1

) cos 1 ( 1

2 1 1

2

1 )

(

] [ ) ( 2

1 ] [ ) ( 2

1 ] [ ) cos(

]

[

2 1 0

1 0 1

1 0

0 0

0 0

>

+

=

+

=

+

=

=

z z

z

z z

e z

e z

X

n u e n u e n u n n

x

j j

n j n

j

ω ω ω

ω ω

ω ω

Differentiation of X(z)

„ Example

] 1 [ ) ( ] [

] 1 [ ) ( ] [

|

|

|

| , 1

) ( ]

[ 1

) (

|

|

|

| ), 1

log(

) (

1 1

1 1 1

2 1

=

=

>

+

=

↔ +

=

>

+

=

n u n

a a n x

n u a a n nx

a z az

az dz

z dX z n nx

az

az dz

z dX

a z az

z X

n n Z

x

Z

R dz

z dX z

n

nx [ ] ↔ − ( ) , ROC = ( ) [ ]

n

n

z n x z

−∞

=

=

Trang 17

Digital Signal Processing, III, Zheng-Hua Tan, 2006

33

Conjugation of a complex sequence

x

Z

R z

X

n

x*[ ] ↔ *( *), ROC = ( ) [ ]

n

n

z n x z

−∞

=

=

Digital Signal Processing, III, Zheng-Hua Tan, 2006

34

Time reversal

„ Example

|

|

|

| , 1

1 )

(

] [ ]

[

1

<

=

=

a z az z

X

n u a

n

x

Z

R z

X

n

x [ − ] ↔ ( 1 / ), ROC = 1 / ( ) [ ]

n

n

z n x z

−∞

=

=

|

|

|

| , 1

1 )

(

] [ ]

[

az z

X

n u a n

>

=

=

Trang 18

Digital Signal Processing, III, Zheng-Hua Tan, 2006

35

Convolution of sequences

„ Example

?

]

[

]

[

]

[

] [ )

2

1

(

]

[

n

y

n

u

n

h

n u

n

=

=

2 1 contains

ROC

), ( ) ( ]

[

*

]

1

x x

Z

R R

z X z X n

x

n

x

n

z n x z

−∞

=

=

) ) 2

1 1 ( 2 1 ) 1 (

1 ( 2

1 1 1

2

1

|

| , ) 1 )(

2

1 1 (

1 )

(

1

|

| , 1

1 ) (

2

1

|

| , 2

1 1

1 ) (

1 1

1 1 1 1

=

>

=

>

=

>

=

z z

z z z z

Y

z z z H

z z z

X

]) [ ) 2

1 ( ] [ ( 2

1

1

1

]

=

Initial-value theorem

) ( lim ] 0

x

z→∞

n

z n x z

−∞

=

=

x[0]

lim ] [

] [ lim ) ( lim

=

=

=

−∞

=

−∞

=

n z

n

n n

z z

z n x

z n x z

X

Trang 19

Digital Signal Processing, III, Zheng-Hua Tan, 2006

37

Properties of z-transform

Digital Signal Processing, III, Zheng-Hua Tan, 2006

38

Summary

„ z-transform

„ Properties of the ROC

„ Inverse z-transform

„ Properties of z-transform

Trang 20

Digital Signal Processing, III, Zheng-Hua Tan, 2006

39

Course at a glance

Discrete-time signals and systems

Fourier-domain

representation

DFT/FFT

System structures

Filter structures Filter design

Filter

z-transform

MM1

MM2

MM9,MM10

MM3

MM6

MM4

Sampling and reconstruction MM5

System analysis System

Ngày đăng: 11/02/2020, 16:30

TỪ KHÓA LIÊN QUAN