1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Lecture Digital signal processing: Lecture 2 - Zheng-Hua Tan

20 43 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 635,3 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

In this lecture you will learn: System impulse response, linear constant-coefficient difference equations, fourier transforms and frequency response. Inviting you refer.

Trang 1

Digital Signal Processing, II, Zheng-Hua Tan, 2006

1

Digital Signal Processing, Fall 2006

EStudy

-Zheng-Hua Tan

Department of Electronic Systems Aalborg University, Denmark

zt@kom.aau.dk

Lecture 2: Fourier transforms and

frequency response

Course at a glance

Discrete-time signals and systems

Fourier-domain

representation

System structures

Filter

MM1

MM2

MM6

MM4

Sampling and

System analysis System

Trang 2

Digital Signal Processing, II, Zheng-Hua Tan, 2006

3

Part I: System impulse response

„ System impulse response

„ Linear constant-coefficient difference

equations

„ Fourier transforms and frequency response

FIR systems – reflected in the h[n]

„ Ideal delay

„ Forward difference

„ Backward difference

„ Finite-duration impulse response (FIR) system

samples.

integer.

positive a

], [

] [

], [

] [

d d

d n n n n h

n n

n x n y

=

<

<

=

δ

] [ ] 1 [ ] [

] [ ] 1 [ ] [

n n

n h

n x n

x n y

δ

δ + −

=

− +

=

] 1 [ ] [ ] [

] 1 [ ] [ ] [

=

=

n n n h

n x n x n y

δ δ

n d

0 -1 0

Trang 3

Digital Signal Processing, II, Zheng-Hua Tan, 2006

5

IIR systems – reflected in the h[n]

„ Infinite-duration impulse response (IIR) system

„ Stability

finite in magnitude.

] [ ] [ ] [

] [ ] [

n u k n

h

k x n y

n

k

n

k

=

=

=

−∞

=

−∞

=

<

=

=

<

=

∑∞

|)

| 1 ( 1

|

|

1

|

| with ] [ ] [

S

a n

u a n h

n n

<

=∑∞

−∞

=

?

| ] [

|

n h n S

Cascading systems

„ Causality

‰ Ideal delay

0 , 0 ] [

?

<

n h

] [ ] [n n n d

h =δ −

] [ ] 1 [ ]

[

difference Forward

n n

n

] 1 [ ] [ ] [

difference Backward

= n n n

] 1 [ ] [

delay sameple

-One

= n

n

]

[n

x

]

[n

]

[n y

Trang 4

Digital Signal Processing, II, Zheng-Hua Tan, 2006

7

Cascading systems

„ Accumulator + Backward difference system

Inverse system:

] [ ]

[

system

r Accumulato

n u n

] [ ] [n n

] 1 [ ] [ ] [

difference Backward

n

]

[n

x

]

[n

]

[n x

] [ ] [

* ] [ ] [

* ]

Part II: LCCD equations

„ System impulse response

„ Linear constant-coefficient difference

equations

„ Fourier transforms and frequency response

Trang 5

Digital Signal Processing, II, Zheng-Hua Tan, 2006

9

LCCD equations

„ An important class of LTI systems: input and output

satisfy an Nth-order LCCD equations

„ Difference equation representation of the accumulator

] [ ] 1 [

]

[

] 1 [ ] [ ] [ ]

[

]

[

] [ ]

1

[

] [ ]

[

1 1

n x n

y

n

y

n y n x k x n

x

n

y

k x n

y

k x

n

y

n

k

n

k

n

k

=

− +

= +

=

=

=

−∞

=

−∞

=

−∞

=

=

=

=

m m N

k

k y n k b x n m

a

0 0

] [ ]

[

One-sample delay x[n]

y[n-1]

y[n]

Recursive representation

Part III: Fourier transforms

„ System impulse response

„ Linear constant-coefficient difference

equations

„ Fourier transforms and frequency response

‰ Frequency-domain representation of discrete-time

signals and systems

‰ Symmetry properties of the Fourier transform

‰ Fourier transform theorems

Trang 6

Digital Signal Processing, II, Zheng-Hua Tan, 2006

11

Signal representations

„ A sum of scaled, delayed impulse

„ Sinusoidal and complex exponential sequences

frequency and with amplitude and phase determined by

the system

systems.

exponentials

) cos(

] [n =A ω0n+ φ

x

∑∞

−∞

=

=

k

k n k x n

n j

e n

∑∞

−∞

=

=

k

k n h k x n

Eigenfunctions

Complex exponentials as input to system h[n]

Define

Then

n j

k

k j k

k n j n

j

n j

e e k h

e k h e

T n

y

n e

n

x

ω ω

ω ω

ω

) ] [ (

] [ }

{ ]

[

, ]

[

) (

−∞

=

−∞

=

=

=

=

<

<

=

n j j k

k j j

e e H n y

e k h e

H

ω ω

ω ω

) ( ] [

] [ )

(

=

= ∑∞

−∞

=

A – linear operator

Trang 7

Digital Signal Processing, II, Zheng-Hua Tan, 2006

13

Eigenvalue – called frequency response

„ Frequency response is generally complex

„ Frequency response of the ideal delay system

) (

, 1

| ) (

|

).

sin(

) (

), cos(

) (

d j

j

d j

I

d j

R

n e

H

e H

n e

H

n e

H

ω

ω ω

ω ω ω ω

=

=

=

=

d

n j n

n j d j

e e n n e

−∞

=

= [ ] )

(

d

d d

n j j

n j n j n n j n j

e e

H

e e e

e T

n

y

ω ω

ω ω ω

ω

=

=

=

=

)

(

} { ]

) (

| ) (

|

) ( ) ( ) (

ω

ω

ω ω

ω

j e H j j

j I j R j

e e H

e jH e H e

H

=

+

=

describes changes in magnitude and phase

] [ ] [ ] [ ]

[n x n n d h n n n d

Frequency response

„ The frequency response of discrete-timeLTI

systems is always a periodic function of the

frequency variable w with period

) ( ]

[ ]

[ )

n

n j n j

n

n j j

e H e

e n h e

n h e

−∞

=

−∞

=

+

− +

π ω

π < ≤

π

± π 2

Trang 8

Digital Signal Processing, II, Zheng-Hua Tan, 2006

15

Ideal frequency-selective filters

„ For which the frequency response is unity over a

certain range of frequencies, and is zero at the

remaining frequencies

Ideal frequency-selective filters

Trang 9

Digital Signal Processing, II, Zheng-Hua Tan, 2006

17

Sinusoidal response of LTI systems

„ Sinusoidal input Æ sinusoidal response with the

same frequency and with amplitude and phase

determined by the system

) cos(

| ) (

| ] [ then

) ( 2

) ( 2

]

[

2 2

) cos(

]

[

0

0

0

0 0 0

0

0 0

θ φ ω

φ ω

ω

ω ω φ ω

ω φ

ω φ ω

φ

+ +

=

+

=

+

=

+

=

n e

H A n y

e e H e

A e

e H e

A

n

y

e e A e

e A

n A

n

x

j

n j j j n

j j j

n j j n

j j

θ ω ω

ω

− =H e = H e e = H e e

e

H

n

h

j e

H j

j

| ) (

|

| ) (

| ) ( ) (

then real, is ]

[

if

0 0

0 0

Signal representation

„ More than sinusoids, a broad class of signals can be

represented as a linear combination of complex

exponentials:

„ If x[n] can be represented as a superposition of

complex exponentials, output y[n] can be computed

=

k

n j

k e k n

=

k

n j j k

k

k e e H n

Trang 10

Digital Signal Processing, II, Zheng-Hua Tan, 2006

19

Frequency-domain representation of x[n]

„ By Fourier transforms Æ Fourier representation:

„ In general, Fourier transform is complex

) (

| ) (

|

) ( ) ( ) (

ω

ω

ω ω

ω

j e X j j

j I j R j

e e X

e jX e X e X

=

+

=

ω π

ω ω

d e e

X

x[n]

n j j

)

(

2

1

sinusoids complex

small mally infinitesi of

ion superposit

a

as represent

n j j

n j j

e n x e

X

d e e X n

x

ω ω

π π

ω

π

=

=

] [ ) (

where

) ( 2

1 ] [

w is continuous-time variable

Fourier transform

n is discrete-time variable

Fourier spectrum Spectrum Magnitude spectrum Amplitude spectrum Phase spectrum

Frequency and impulse responses

„ Are a Fourier transform pair

„ Fourier transform is periodic with period

n j j

e n x e

X ω − ω

) (

ω π

π π

ω ω

ω ω

d e e H n

h

e n h e

H

n j j n

n j j

−∞

=

=

=

) ( 2

1 ] [

] [ ) (

Recall

π

2

Trang 11

Digital Signal Processing, II, Zheng-Hua Tan, 2006

21

Sufficient condition for Fourier transform

„ Condition for the convergence of the infinite sum

„ X[n] is absolutely summable, then its Fourier

transform exists (sufficient condition)

<

=

| ] [

|

|

||

] [

|

| ] [

| | ) (

|

n x

e n x

e n x e

X

n j

n j j

ω

ω ω

Example: ideal lowpass filter

<

<

=

π ω ω

ω ω

ω

|

| 0

|

| , 1 ) (

c

c j

lp e H

<

<

=

n

n d

e n

lp

c c

, sin 2

1 ]

[

π

ω ω π

ω ω ω

∑∞

−∞

=

=

n

n j c j

n

n e

π

ω

sin )

(

ω

Trang 12

Digital Signal Processing, II, Zheng-Hua Tan, 2006

23

Example: Fourier transform of a constant

„ Its Fourier transform is defined as the periodic

impulse train

1 ] [n =

x

) 2 ( 2 )

X

r

jω ∑∞ πδ ω π

−∞

=

+

=

n j j

n j j

e n x e

X

d e e X n

x

ω ω

π π

ω

π

=

=

] [ ) ( where

) ( 2

1 ] [

Part III: Fourier transforms

„ System impulse response

„ Linear constant-coefficient difference

equations

„ Fourier transforms and frequency response

‰ Frequency-domain representation of discrete-time

signals and systems

‰ Symmetry properties of the Fourier transform

‰ Fourier transform theorems

Trang 13

Digital Signal Processing, II, Zheng-Hua Tan, 2006

25

Symmetry properties of Fourier transform

„ Any , x [n]

] [ ]

x e = e

] [ ]

x o = − o

] [ ] [ ] [

] [ ]) [ ] [ ( 2

1 ] [

] [ ]) [ ] [ ( 2

1 ] [ define

]) [ ] [ ( 2

1 ]) [ ] [ ( 2

1 ] [

*

*

*

*

*

*

n x n x n x

n x n x n x n x

n x n x n x n x

n x n x n x n x n x

o e

o o

e e

+

=

=

=

=

− +

=

− +

− +

=

) ( )) ( ) ( ( 2

1

)

(

) ( )) ( ) ( ( 2

1

)

(

where

) ( ) ( )

(

*

*

*

*

ω ω

ω ω

ω ω

ω ω

ω ω

ω

j o j

j j

o

j e j j

j

e

j o j e j

e X e

X e X e

X

e X e

X e X e

X

e X e X

e

X

=

=

= +

=

+

=

Symmetry properties of Fourier transform

„ Table 2.1

Trang 14

Digital Signal Processing, II, Zheng-Hua Tan, 2006

27

Part III: Fourier transforms

„ System impulse response

„ Linear constant-coefficient difference

equations

„ Fourier transforms and frequency response

‰ Frequency-domain representation of discrete-time

signals and systems

‰ Symmetry properties of the Fourier transform

‰ Fourier transform theorems

Linearity of the Fourier Transform

) ( )

( ]

[ ]

[

) ( ]

[

) ( ]

[

2 1

2 1

2 2

1 1

ω ω

ω ω

j j

F

j F

j F

e bX e

aX n bx n

ax

e X n

x

e X n

x

+

↔ +

Trang 15

Digital Signal Processing, II, Zheng-Hua Tan, 2006

29

Time shifting and frequency shifting

) (

] [

) ( ]

[

) ( ]

[

) ( 0

ω

ω ω

ω

j F n

j

j n j F d

j F

e X n x

e

e X e n

n

x

e X n

x

d

Time reversal

) ( ] [

real.

is ] [

if

) ( ] [

) ( ]

[

* ω

ω ω

j F

j F j F

e X n

x

n x

e X n

x

e X n

x

Trang 16

Digital Signal Processing, II, Zheng-Hua Tan, 2006

31

Differentiation in frequency

ω

ω ω

d

e dX j n

nx

e X n

x

j F

j F

) ( ]

[

) ( ]

[

Parseval’s theorem

ω π

π π ω

ω

−∞

=

=

=

d e X n

x

E

e X

n

x

j n

j F

2 2

| ) (

| 2

1

| ] [

|

) ( ]

[

Trang 17

Digital Signal Processing, II, Zheng-Hua Tan, 2006

33

The convolution theorem

) ( ) ( )

(

] [

* ] [ ] [ ] [ ]

[

) ( ]

[

) ( ]

[

ω ω ω

ω ω

j j j

k

j F

j F

e X e H e

Y

n h n x k n h k x n

y

e H

n

h

e X

n

x

=

=

=

∑∞

−∞

=

The modulation or Windowing theorem

∫−

=

=

π π

θ ω θ ω

ω ω

θ

e

Y

n w n

x

n

y

e W

n

w

e X

n

x

j j j

j F

j F

) ( ) ( 2

1 )

(

] [ ] [

]

[

) ( ]

[

) (

]

[

) (

Trang 18

Digital Signal Processing, II, Zheng-Hua Tan, 2006

35

Fourier transform theorems

„ Table 2.2

Fourier transform pairs

„ Table 2.3

Trang 19

Digital Signal Processing, II, Zheng-Hua Tan, 2006

37

Example

„ Determining a Fourier transform using Tables 2.2

and 2.3

ω

ω ω

ω

ω ω

ω ω

ω ω

j

j j

n j

j j

j j

n j j

F n

ae

e a e X

n u a n

x a n

x

ae

e e

X e e X

n u a n

x n x

ae e

X n u a n x

=

=

=

=

=

=

=

=

=

1 ) (

]) 5 [ (i.e.

] [ ] [

1 ) ( )

(

]) 5 [ (i.e.

] 5 [ ] [

1

1 ) ( ] [ ] [

5 5 2 5

5 1

5 2

5 1

2

1 1

] 5 [ ]

Summary

„ System impulse response

„ Linear constant-coefficient difference

equations

„ Fourier transforms and frequency response

‰ Frequency-domain representation of discrete-time

signals and systems

‰ Symmetry properties of the Fourier transform

‰ Fourier transform theorems

Trang 20

Digital Signal Processing, II, Zheng-Hua Tan, 2006

39

Course at a glance

Discrete-time signals and systems

Fourier-domain

representation

DFT/FFT

System structures

Filter structures Filter design

Filter

z-transform

MM1

MM2

MM9,MM10

MM3

MM6

MM4

Sampling and

System analysis System

Ngày đăng: 12/02/2020, 12:39

TỪ KHÓA LIÊN QUAN