1. Trang chủ
  2. » Giáo án - Bài giảng

Chương 1. Bài 3

19 330 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Lập Bảng Biến Thiên Và Tìm Điểm Cực Trị Của Các Đồ Thị Hàm Số
Trường học Trường Đại Học Khoa Học Tự Nhiên
Chuyên ngành Toán Học
Thể loại Bài Tập
Thành phố Thành Phố Hồ Chí Minh
Định dạng
Số trang 19
Dung lượng 330 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Lập bảng biến thiên và tìm điểm cực trị của các đồ thị hàm số sau... GIÁ TRỊ LỚN NHẤT VÀ NHỎ NHẤT TRÊN KHOẢNG 3.. GIÁ TRỊ LỚN NHẤT VÀ NHỎ NHẤT TRÊN ĐOẠN... Quan sát đồ thị sau và nhận

Trang 2

Lập bảng biến thiên và tìm điểm cực trị của các đồ thị hàm số sau

.

1;3

b

x

 

Trang 3

 



 

 

x -1 0 1

y’ + 0 - 0 + 0 -

y

2 2

1

Trang 4

 





 

x 0 2

y’ - 0 + 0 -

y

5

1

Trang 7

1 2 3 4 5 -1

1 2 3 4 5 6 7

x

y

x 1 2 3

y’ + 0

-y

5

3 1

Trang 8

§3 GIÁ TRỊ LỚN NHẤT,

GIÁ TRỊ NHỎ NHẤT

CỦA HÀM SỐ

1 ĐỊNH NGHĨA

2 GIÁ TRỊ LỚN NHẤT VÀ NHỎ NHẤT

TRÊN KHOẢNG

3 GIÁ TRỊ LỚN NHẤT VÀ NHỎ NHẤT

TRÊN ĐOẠN

Trang 9

Quan sát đồ thị sau trên tập số thực R

và trả lời các câu hỏi sau:

y

Trong các điểm của

đồ thị hàm số trên điểm nào có tung

độ lớn nhất ?

O f(x0) M0

So sánh f(x) và f(x0)?

0

, ( ) f x ( ) x

điểm M0

Trang 10

1 ĐỊNH NGHĨA

Cho hàm số y=f(x) liên tục trong khoảng K

Nếu tồn tại số x K0  sao cho

0

, ( ) ( )

x K f x f x

gọi là giá trị lớn nhất của hàm số y=f(x) trong khoảng K tại điểm

( )o

Mf x

0

x

Kax ( )

Kí hiệu:

Trang 11

Cho hàm số y=f(x) liên tục trong khoảng K

Nếu tồn tại số x K0  sao cho

0

, ( ) ( )

x K f x f x

   thì

gọi là giá trị nhỏ nhất của hàm

số y=f(x) trong khoảng K tại

điểm

( )o

m f x

0

x

K f xm

Trang 12

Quan sát đồ thị sau và nhận xét

y

Trong các điểm của

đồ thị hàm số trên điểm nào có tung độ lớn nhất , nhỏ nhất?

O f(x0) M0

Vậy trên tập xác định của hàm số trên

có tồn tại GTLN,GTNN hay không ?

không tìm được điểm nào cả

Trang 13

Từ bảng biến thiên của hàm số sau hãy cho biết giá trị lớn nhất

và nhỏ nhất của hàm số đó

x 2

y’ - 0 +

y

-1

Trang 14

2 GIÁ TRỊ LỚN NHẤT VÀ NHỎ

NHẤT TRÊN KHOẢNG

Phương pháp:

 

Lập bảng biến thiên trên khoảng

đó rồi kết luận

Bài toán 1: Tìm giá trị lớn nhất và

nhỏ nhất của hàm số trên khoảng (a;b)(a có thể là ,b có thể là ) 

Trang 15

Ví dụ: Tìm giá trị lớn nhất,giá trị nhỏ nhất của các hàm số sau :

3

trong khoảng ( 1;   )

Trang 16

3 GIÁ TRỊ LỚN NHẤT VÀ NHỎ

NHẤT TRÊN ĐOẠN

Bài toán 2: Tìm giá trị lớn nhất và nhỏ nhất của hàm số trên đoạn [a; b]

*Phương pháp:

Lập bảng biến thiên trên đoạn đó rồi kết luận

Cách 1 :

Trang 17

Cách 2 :

i.Tính y’

1, 2 n ;

2i.Tìm các điểm mà tại

đó y’=0 hoặc y’ không xác định

3i.Tính

4i So sánh rồi kết luận

( ); ( ); ( ); ( ); ( )n

Trang 18

Ví dụ: Tìm giá trị lớn nhất,giá trị nhỏ nhất của các hàm số sau :

a y x   x

  1;2 

trong đoạn

Ngày đăng: 16/09/2013, 14:10

Xem thêm

HÌNH ẢNH LIÊN QUAN

Đồ thị hàm số trên  điểm nào có tung - Chương 1. Bài 3
th ị hàm số trên điểm nào có tung (Trang 9)
Đồ thị hàm số trên  điểm nào có tung độ  lớn nhất , nhỏ nhất? - Chương 1. Bài 3
th ị hàm số trên điểm nào có tung độ lớn nhất , nhỏ nhất? (Trang 12)

TỪ KHÓA LIÊN QUAN

w