capillary waves, gravity waves, infra-gravity waves, tidal waves Wave Classification: Generation * impulse free wave - tsunami * constant forcing forced - tide, wind Plane Water Surface
Trang 1Linear Wave Fundamentals
To describe a wave: H, L, T, C
Wave steepness: H/L
Wave speed: C = L/T
C
a = Wave Am plitude
Linear Wave Theory – Principle of Superposition
Trang 2capillary waves, gravity waves,
infra-gravity waves, tidal waves
Wave Classification: Generation
* impulse (free wave) - tsunami
* constant forcing (forced) - tide, wind
Plane Water Surface
Wind
friction
High p Low p
Water Surface /w waves at time t 1
Water Surface /w waves at time t 2 Wind Direction
Reduced Static Pressure Stream Lines
Wind Direction
friction
Mechanism: Wind Generating Waves
Trang 3DEEP WATER Wave Direction
Wave Base
Water Particle
Motion of water particles
Progressive waves
Standing waves
Wave Classification: Motion
Trang 4• incompressible, homogeneous fluid
• neglect surface tension and Coriolis
• uniform and constant pressure at the surface
• ideal fluid (no viscosity)
• horizontal, impermeable bottom
• small wave height and invariant form
• long-crested waves (2D approach)
George Airy, 1801-1892
Basic Relationships
2
Wave profile:
,
k
L
C
Wave phase speed:
Dispersion relationship
2
tanh
2
C
L
2
tanh
2
C
L
tanh
2
L
Wave phase speed:
Wave length:
Trang 5t 1 t 2
Waves (short, irreg.) Swell (long, reg.)
Asymptotic Solutions
Deep water: (d/L >1/2)
2 2
o
gT d gT
L
2
o
gT d gT
L
2
L
Shallow Transitional Deep
Shallow water: (d/L < 1/25)
tanh
2
gT d
L
2
tanh
2
gT d
L
L L
2d/L 0.01
0.1 1 10
tanh = 1
ta nh (2d/
d/ L
ta nh (2d/
Trang 6tanh
o
d
L
2
tanh
o
L
(iterative solution required)
sinh 0.5(x x)
cosh 0.5( x x)
tanh
/ sinh
/ cosh
Hyperbolic Functions
Variation of Wave Parameters with d/L o
Trang 71
t
n
T
2
t n T
For a simple harmonic wave train,
the wave period is independent of depth!
Water Particle Velocity
Water Particle Velocity
cosh 2 ( ) / 2 2
cos
2 cosh(2 / )
u
sinh 2 ( ) / 2 2
sin
2 cosh(2 / )
w
Trang 8
cosh 2 ( ) / 2 2
sin cosh(2 / )
x
a
sinh 2 ( ) / 2 2
cos cosh(2 / )
z
a
Water Particle Motion: Equations
cosh 2 ( ) / 2 2
sin
2 sinh(2 / )
sinh 2 ( ) / 2 2
cos
2 sinh(2 / )
2 2
2 2 1
cosh 2 ( ) /
2 sinh(2 / )
H A
d L
sinh 2 ( ) /
2 sinh(2 / )
H B
d L
Water Particle Motion: Trajectory
Shallow water: Deep water:
,
2 /
2
z L H
Trang 9
Pressure Under Waves
Dynamic component due
to acceleration
Water surface profile
Atmospheric pressure Static component
of pressure
' a
ppp (relative pressure)
Pressure Under Waves
cosh 2 ( ) /
cosh 2 /
z
K
d L
Pressure response factor
1 cosh 2 /
z
d L
At bottom (z = -d):
z
gK
Water level from pressure: (N = 1 for linear waves)
Trang 10Potential energy:
( )
x L
x
( ) 2
PT
d z
2
1
16
w
Kinetic Energy:
2
1
( )
16
x L
2 2
( )
2
K
Total Energy:
2
1
8
2
1
8
(per wave and unit width) (per wave and unit surface area)
w
Trang 11Definition (rate of energy transfer):
1x L
D
D
L
2
1
8 2 sin 2
kd T
Group Velocity
t 1 5 4 3 2 1
Distance from Wavemaker
t 2 6 5 4 3 2
t 3 7 6 5 4 3
t 4 8 7 6 5 4
t 5 9 8 7 6 5
t 6 10 9 8 7 6 5
C
C g
> C g
Group Velocity
1
2 sinh(4 / )
g
o
L
T
g
L
(shallow water)
Trang 12Two waves:
1 2
cos
env
Envelope:
Envelope of Superimposed Waves
Cnode= Cg
Energy Transport