Internal energy U: minimum at a given S, V. Entropy S: maximum at a given U, V. Gibbs function G: minimum at a given T, P. Helmholtz function F: minimum at a given T, V. Enthalpy H: minimum at a given S, P.
Trang 1Ngo Thanh An
PHYSICAL CHEMISTRY 1
Chapter 4 – Thermodynamic functions and
Fundamental equations
Trang 2Part 1 – Thermodynamic functions
Trang 3Thermodynamic function Symbol Definition unit
Gibbs free energy (isothermal, isobaric
thermodynamic potential) G G = H –TS Cal or J
Helmholtz free energy (isothermal,
isochoric thermodynamic potential) F F = U – TS Cal or J Entropy S dS=Qrev/T cal.KJ.K–1–1Internal energy U Cal or J Enthalpy H H = U + PV Cal or J
Thermodynamic functions
Trang 4Thermodynamic functions
V
U S
Trang 5• Internal energy U: minimum at a given S, V.
• Entropy S: maximum at a given U, V
• Gibbs function G: minimum at a given T, P
• Helmholtz function F: minimum at a given T, V
• Enthalpy H: minimum at a given S, P
Characteristics of thermodynamic functions
Characteristics of thermodynamic functions
Trang 6Characteristics of thermodynamic functions
Characteristics of thermodynamic functions
Trang 7Theo nguyên lý tăng entropy, khi entropy đạt cực đại thì:
Ta đặt giá trị A bằng: Áp dụng công thức:
Vậy A sẽ bằng:
Ta lại có:
Chứng minh
Characteristics of thermodynamic functions
Characteristics of thermodynamic functions
Trang 8Vậy giá trị A cũng sẽ bằng 0, tức là U cũng sẽ đạt cực trị theo V tại 1 giá trị entropy nào đó Ta xem A là một hàm số của A = A(V, U(V)) Tính chất đạo hàm của hàm hợp cho ta công thức:
Như vậy, ta sẽ có:
Với điều kiện A = 0, sẽ cho ta:
Chứng minh
Characteristics of thermodynamic functions
Characteristics of thermodynamic functions
Trang 9Như vậy, hàm U sẽ đạt cực tiểu
Chứng minh
Characteristics of thermodynamic functions
Characteristics of thermodynamic functions
Trang 10If we have a function F = F(x,y)
We need to transform function F(x,y) into:
Function G(x,w) where w is a conjugate variable of variable y
Function H(u,y) where u is a conjugate variable of variable x
Function L(u,w) where u, w are conjugate variables of x, y respectively
(1)
where:
(2)Equation (1) – equation (2), having :
Where
Prove:
Relations of thermodynamic functions
Legendre transform
Trang 11where:
In summary, Legendre transform is a method to converse a function F(x,y) into a
new function G(x,w), where y and w are a couple of conjugate variable
Legendre transform
Relations of thermodynamic functions
Trang 12From function U = U(S, V), we
can transform to different state
Application of Legendre transform
Relations of thermodynamic functions
Trang 13Relationship between state function and
Trang 14Josiah Willard Gibbs
Hermann von Helmholtz
Relations of thermodynamic functions
Trang 15•
Applications of thermodynamic functions
First order differential
Relations of thermodynamic functions
Trang 16Second order differential
Relations of thermodynamic functions
Applications of thermodynamic functions
Trang 20c Trongtrườnghợpápdụngphươngtrình Gibbs chohàm F:
• Ta sẽcó:
d Trongtrườnghợpápdụngphươngtrình Gibbs chohàm G:
Trang 21Effect of thermodynamic properties
Summary
Trang 22Internal Energy Changes
Effect of thermodynamic properties
Trang 23Effect of thermodynamic properties
Trang 24Enthalpy Changes
Effect of thermodynamic properties
Trang 2525
Trang 26Entropy Changes
Effect of thermodynamic properties
Trang 27The temperature of a fluid may increase,
decrease, or remain constant during a
throttling process The development of an h = constant line on a P-T diagram.
The temperature behavior of a fluid during a throttling (h = constant) process is
described by the Joule-Thomson coefficient
The Joule-Thomson coefficient
represents the slope of h = constant
lines on a T-P diagram.
Joule – Thomson coefficient
Trang 28Constant-enthalpy lines of a substance
However, the fluid temperature decreases during a throttling process that takes place on the left-hand side
of the inversion line
It is clear from this diagram that a cooling effect cannot be achieved by throttling unless the fluid is below its maximum inversion temperature
This presents a problem for substances whose maximum inversion temperature is well below room temperature
Joule – Thomson coefficient
Trang 29Part 2 – Fundamental equations
Trang 30The equation is obtained by combining the first and second law of thermodynamics
a) First law of thermodynamics: dU = Q - A
Second law of thermodynamics
dU T.dS - A
Fundamental equations
Q T
dS �
Trang 34U H F G
Fundamental equations