On: 20 October 2014, At: 02:54Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41Mortimer Street,
Trang 1On: 20 October 2014, At: 02:54
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41Mortimer Street, London W1T 3JH, UK
Journal of Difference Equations and Applications
Publication details, including instructions for authors and subscription information:
Published online: 17 Sep 2010
To cite this article: L.C Loi , N.H Du & P.K Anh (2002) On Linear Implicit Non-autonomous Systems of Difference Equations, Journal
of Difference Equations and Applications, 8:12, 1085-1105, DOI: 10.1080/1023619021000053962
To link to this article: http://dx.doi.org/10.1080/1023619021000053962
PLEASE SCROLL DOWN FOR ARTICLE
Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the
publications on our platform However, Taylor & Francis, our agents, and our licensors make no representations orwarranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content Any opinionsand views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed
by Taylor & Francis The accuracy of the Content should not be relied upon and should be independently verified withprimary sources of information Taylor and Francis shall not be liable for any losses, actions, claims, proceedings,
demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly
in connection with, in relation to or arising out of the use of the Content
This article may be used for research, teaching, and private study purposes Any substantial or systematic reproduction,redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly
forbidden Terms & Conditions of access and use can be found at
http://www.tandfonline.com/page/terms-and-conditions
Trang 2On Linear Implicit Non-autonomous Systems of Difference Equations
L.C LOI, N.H DU and P.K ANH*
Faculty of Mathematics, Mechanics and Informatics, Vietnam NationalUniversity, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
(Received 11 July 2000; Revised 10 April 2001; In final form 27 April 2001)
This paper deals with the solvability of initial-value problems (IVPs) and multipoint value problems (MPBVPs) for linear implicit non-autonomous systems of difference equations.
boundary-Keywords: Linear implicit difference equations (LIDEs); Index of LIDEs; Singular-value decompostions (SVDs); IVPs; MPBVPs
1991 Mathematics Subject Classifications: 39A11; 39A10
ISSN 1023-6198 print/ISSN 1563-5120 online q 2002 Taylor & Francis Ltd
*Corresponding author Tel.: +740-593-9479 E-mail: anhpk@vnu.edu.vn
2002 Vol 8 (12), pp 1085–1105
Trang 32 THE CONSTANT-RANK CASE
Throughout this section, we assume that rankAn; r (n [ N), where 0 ,
r , m: Consider a SVD of An:
An¼ UnSnVTnþ1 ð3Þwhere Sn is a diagonal matrix with singular values: snð1Þ$snð2Þ$ · · · $
sðrÞn 0 on the main diagonal, i.e Sn¼ diagðsnð1Þ; ;sðrÞn ; 0; ; 0Þ and
Un, Vn+1are orthonormal matrices, i.e:
UTnUn¼ UnUT
n ¼ VT nþ1Vnþ1¼ Vnþ1VTnþ1¼ I
Trang 4Here I and Ik ðk – mÞ denote the m £ m and k £ k- identity matrices,respectively Set
ðiiÞ Pnþ1¼ G21
ðiiiÞ G21n BnQn¼ Vnþ1QVTn ð6ÞPnþ1G21n BnQn¼ 0; Qnþ1G21n BnQn¼ Vnþ1QVT
nþ1G21n Bn¼ 0 andusing Eq (6), we get Q~2n¼ QnVnVT
nþ1G21n BnQnVnVT
nþ1G21n Bn¼QnVnQVT G21Bn¼ VnQVT G21Bn¼ ~Qn: Lemma 1 is proved A
Trang 5Lemma 2 Let An¼ UnSnVTnþ1¼ UnSnVT
nþ1be two SVDs of An Then(i) The matrices GnU Anþ BnVnQVT
nþ1 and GnU Anþ BnVnQ VT
nþ1 aresimultaneously non-singular
(ii) If Gnis non-singular, then
VnQVTnþ1G21n ¼ VnQ VTnþ1G21n ð9Þand
~
PnG21n21¼ ~PnG21n21 ð10Þwhere P˜nis defined in Lemma 1
Proof (i) Denote by S¯n the subspace {z: BnVn VTnþ1z[ ImAn} andsuppose that Gn is non-singular For any x [ Sn> KerAn there exists
z [Rm
such that BnVn VTnþ1x ¼ Anz; and therefore, Qnþ1G21n BnVn VTnþ1x ¼
Qnþ1G21n Anz: Using Eq (5), we get Qnþ1G21n Anz ¼ Qnþ1Pnþ1z ¼ 0: Thismeans
Qnþ1G21n Bny ¼ 0 ð11Þwhere y U VnVTnþ1x: On the other hand, since x [ KerAn, there exists
z[Rm such that x ¼ Qnþ1z; hence y ¼ VnVTnþ1Qnþ1z¼ VnQ VTnþ1z:Further, An21y ¼ Un21Sn21VT
nVnQ VT nþ1z¼ 0; therefore y [ KerAn21and y ¼ Qnh for some h[Rm: By virture of Eqs (7) and (11), we getQnþ1G21n BnQnh¼ Vnþ1QVT
nh¼ 0: From the last relation, we find that
Sn> KerAn ¼ {0}: Now the further proof of part (i) follows the same line
as the proofs given in Ref [2] Indeed, suppose Gnx ¼ 0 then
BnVn VTnþ1Qnþ1x ¼ 2Anx [ ImAn; therefore Qnþ1x [ Sn: On the otherhand, Qnþ1x [ KerAn; hence Qnþ1x [ Sn> KerAn¼ {0}: It followsthat Anx ¼ 0; and therefore, x ¼ Qnþ1x ¼ 0: Thus Gn is non-singulareither
(ii) First we note that both Qn and Qn are projections onto KerAn21,therefore QnQn ¼ Qn; i.e VnQVTnVnQ VTn ¼ VnQ VTn: From the last relation,
it follows that
Q ¼ VTVnQVTVnQ ð12Þ
Trang 6Now we shall prove Eq (9) Instead of Q in Gn; substituting Eq (12), weobtain:
nþ1Qnþ1Pnþ1¼ 0: Further,
by virtue of Eq (6), we have VnQVT
nþ1ðG21
n BnQnÞ VnQ VTnþ1¼ðVnQVT
nÞ VnQ VTnþ1¼ QnQn Vn VT
nþ1¼ QnVn VTnþ1¼ VnQ VTnþ1:Thus VnQVT
nþ1G21n Gn ¼ VnQ VTnþ1; which means Eq (9)
Finally, to prove Eq (11), we first note that G21n21Gn21 ¼ G21
n21ðAn21þBn21Vn21Q VTnÞ: From Eqs (5), (6) and (12), it follows that G21
Lemma 2 guarantees that the following definition does not depend on thechosen SVDs of An
Definition 1 The LIDE (Eq (1)) is said to be index-1 if:
i¼0G21n212iBn212i; MðnÞk ¼Qk
i¼0G21 n212iBn212ið0 # k # n 2 1Þ:
Trang 7Proof Relation (13) follows directly from Eq (9) and the definitions of ~Pnand ^Pn: Further, using Eq (8), we get
~PnMðnÞk ¼ ~PnYk
i¼0
~Pn2iG21n212iBn212i ð15Þ
^
PnMðnÞn ¼ ^PnYk
i¼0
^Pn2iG21n212iBn212i ð16Þ
Applying Eq (13) and taking into account Eq (10), we have ^Pn2iG21n212i¼
~
Pn2iG21n212i¼ ~Pn2iG21n212i: Finally, combining the last relation withEqs (13), (15) and (16), we come to Eq (14), as was to be proved ANow we are ready to consider IVPs and BVPs for LIDEs
Theorem 1 Let LIDE (Eq (1)) be index-1 Then
Proof Multiplying both sides of Eq (17) from the left by Pnþ1G21n and
Qnþ1G21n ; respectively, and applying Eqs (5) – (7), we come to thefollowing system:
Trang 8Further, multiplying both sides of Eq (21) from left by VnVTnþ1; we obtain
VnQVTnþ1G21n BnPnxnþ Qnxnþ VnQVTnþ1G21n qn¼ 0Denoting Pnxnby un, from the last relation, we find xn ¼ Pnxnþ Qnxn¼
ðI 2 VnQVT
nþ1G21n BnÞun2 VnQVTnþ1G21n qn: Thus,
xn¼ ~Pnun2 VnQVTnþ1G21n qn ð22ÞObserving that un is a solution of the explicit system of differenceequations
unþ1¼ Pnþ1G21
n Bnunþ Pnþ1G21
n qnu0¼ u0U P0x0
i¼0
Pn2iG21n212iBn212iPkþ1G21n qk
þ PnG21 n21qn21:
Using the last relation and Eq (22) and arguing as in the proof of theLemma 3, we come to formula (19) Now suppose, we are given two SVDs
Trang 9The next problems we shall be concerned with are frequently referred to
as MPBVPs:
Aixiþ1¼ Bixiþ qi i ¼ 0; n 2 1 ð23Þ
Xn i¼0
are arbitrary vectors
Put X0U ~P0; XiU ~PiMðiÞi21ði ¼ 1; n 2 1Þ; XnU PnMðnÞn21 and D ¼Pn
i¼0CiXi: Obviously, {Xi}ni¼0 are fundamental solutions of Eq (23), i.e.AiXiþ1 ¼ BiXiði ¼ 0; n 2 1Þ: Let Ai¼ UiSiVT
Trang 10Definition 2 A MPBVP for index-1 LIDE is said to be regular if thefollowing regularity condition is valid:
i¼0CiXiþ Cnð Xn2 XnÞ ¼ D þ Cnð Pn2 PnÞMðnÞn21: Now suppose that
Eq (25) is valid Let ðxT
0;jTÞT[ Kerð DjCnQnÞ then
Dx0þ CnQn j¼ 0 ð26Þ
Observing that Qn ¼ QnQn; from Eq (26), we have Dx0 þ Cnð Pn2PnÞMðnÞn21x0þ CnQnQn j¼ 0: Since An21Pn¼ An21¼ An21Pn; it follows
An21ð Pn2 PnÞMðnÞn21x0¼ 0: This means ð Pn2 PnÞMðnÞn21x0¼ Qnzfor some
PnMðnÞn21¼ PnMðnÞn21 ¼ Xn: This implies Dx0 ¼Pn
i¼0CiXix0 ¼Pn
i¼0CiXiP0x0¼ 0: From Eq (26), it follows that CnQnj¼ 0 Since
QnQn ¼ Qn and Qnðzþ QnjÞ ¼ 0; we get Qnj¼ 2Qnz; and therefore
CnQnz¼ 0: On the other hand, as Xix0 ¼ XiP0x0¼ 0 ði ¼ 0; nÞ; we findthat Dx0þ CnQnz¼ 0: This means ð xT0;zTÞT [ KerðDjCnQnÞ ¼ KerR;hence Qnj¼ X 2 Qnz¼ 0; therefore ð xT
0;jTÞT[ Ker R; where
Trang 11Thus, the inclusion Ker ð DjCnQnÞ , Ker R is proved To show the converseinclusion, we observe that for arbitrary ðxT
0;jTÞT[ Ker R; there hold therelations P0x0¼ P0Px0¼ 0 and Qnj¼ 0: This implies that Xix0¼ Xix0¼XiP0x0¼ 0; therefore Dx0 ¼ 0: Further, since CnQn j¼ 0; it follows Dx0þ
Proof It suffices to prove that the regularity of MPBVP Eqs (23) and (24)
is equivalent to the fact that the corresponding homogenous MPBVP:
Aixiþ1¼ Bixiði ¼ 0; n 2 1Þ ð27Þ
Xn i¼0
has only trivial solutions Suppose first that problem (27), (28) has onlytrivial solution and let ðxT0;jTÞT [ KerðDjCnQnÞ: Putting x*
i U Xix0ði ¼0; n 2 1Þ and x*U Xnx0þ Qnj; we find that {x*
i}ni¼0 is a solution ofEqs (27) and (28) From the assumption, it follows x*
i ¼ 0 ði ¼ 0; nÞ:
In particular X0x0 ¼ 0 and Xnx0þ Qnj¼ 0: Since X0x0 ¼ ðI 2Q0V0VT1G210 B0Þx0¼ 0; or Q0V0VT1G210 B0x0¼ x0 we get P0x0 ¼ 0;consequently Xnx0¼ XnP0x0¼ 0: Thus, Qnj¼ 0; hence ð xT
0;jTÞT[KerR: This means KerðDjCnQnÞ , KerR: To prove the converse inclusion,let ð xT
0;jTÞT[ KerR: Then P0x0 ¼ 0; therefore Xix0¼ XiP0x0 ¼ 0ði ¼0; nÞ; hence Dx0¼ 0: On the other hand, j[ KerQn; consequently
ð xT0;jTÞT[ KerðDjCnQnÞ: Now suppose that MPBVP Eqs (23) and (24)
is regular and let {xi}ni¼0 be a solution of Eqs (27) and (28) Then thereexist x0;j[Rm
such that xi¼ Xix0; ði ¼ 0; n 2 1Þ and xn ¼ Xnx0þ Qnj:From condition (28), it follows D x0þ CnQnj¼ 0 or ð xT
0;jTÞT[KerðDjCnQnÞ: The regularity condition ensures that ð xT
0;jTÞT [ KerR;
or P0x0 ¼ 0 and Qnj¼ 0: Since Xix0 ¼ XiP0x0¼ 0 ði ¼ 0; nÞ it follows
xi¼ 0 ði ¼ 0; nÞ: Thus problem (27), (28) has only trivial solution
Trang 123 THE NON-CONSTANT-RANK CASE
We begin this section by considering a LIDE (Eq (1)) with nestingkernels
Let Qnbe linear projections onto KerAnand PnU I 2 Qn:
Lemma 5 Condition (29) is equivalent to the relations:
x0¼ ðI 2 Q0G210 B0Þx02 Q0G210 q0
xn¼ ðI 2 QnG21
n BnÞ{Yn21 i¼0Pn212iG21n212iBn212ix0
þXn22 k¼0
Yn222k
i¼0Pn212iG21n212iBn212iðPkG21
k qkþ QkjkÞ
þ Pn21G21
n21qn21þ Qn21jn21} 2 QnG21n qnðn $ 1Þ; ð31Þwherej [Rmði ¼ 0; n 2 1Þ are arbitrary vectors
Trang 13Proof By arguing as in the proof of Theorem 1, we see that LIDE (Eq (1))
is equivalent to the system:
Pnxnþ12 PnG21n BnPnxn¼ PnG21
xn¼ ðI 2 QnG21
n BnÞPnxn2 QnG21n qn ð33ÞDenoting Pnxnby unand taking into account relation (30) in Lemma 5, from
Eq (32), we have
Pnunþ12 PnG21n Bnun¼ PnG21
n qnThe last equation has solutions of the form
unþ1¼ PnG21
n Bnunþ PnG21
n qnþ Qnjn ð34Þwhere jn[Rm
are arbitrary vectors From Eq (34), we easily deducethat
un¼Yn21 i¼0Pn212iG21n212iBn212iu0
þXn22 k¼0
Yn222k
i¼0Pn212iG21n212iBn212iðPkG21
In particular, when KerAnare constant, then rankAn; r; Pn; P; Qn ; Qand LIDE (Eq (1)) is index-1
According to relations (7), PiG21i BiQi21ji21¼ PG21
i BiQji21¼ 0 andsolution formula (31) is the same as Eq (19)
We end this section by considering a direct consequence of Theorem 3 Let
An¼ UnSnVT
nþ1be a SVD of An, whereSn¼ diagðsnð1Þ; ;sðrn Þ
n ; 0; ; 0Þand rnU rankAn:
{
Trang 14Corollary Consider a LIDE with non-decreasing ranks: rankAnþ1$rankAn: Suppose that for all n [ N; the matrices Anþ BnVnQnVT
nþ1;where
Snþ UT
nBnVnQn are all non-singular Now Theorem 3 ensures that LIDE(Eq (35)) has solutions yn, therefore xn¼ Vnynwill be solutions of LIDE(Eq (1)) The proof of Corollary is complete A
4 EXAMPLE
We shall illustrate the main results of the preceding sections by using somesimple examples Because of limitation of space, we shall not give lengthydetails
Example 1 Consider Eq (1) with the following data:
!ð36Þ
Trang 15In this case, rankAn¼ 1; An¼ UnSnVTnþ1;
Un ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi1
1 þ n2p
Vnþ1¼ 1ffiffiffi
2p
Pn¼12
Simple calculation shows that
0B
1CA;
Since Gnðn $ 0Þ are non-singular, Eq (1) with data (36) is an index-1LIDE Theorem 1 ensures the unique solvability of the corresponding IVP
Trang 16Using formula (19), we find that the IVP (Eqs (17) and (18)) has a uniquesolution
x0 ¼ ð x0ð1Þ; 21ÞT; xn¼ ðn 2 1Þ!Xn22
k¼0
1k!ð2n2
1CC
1CC
C;
qi¼
1i
i2
0BBB
1CC
1CC
1CC
1CC
C; g¼
102
0BBB
1CC
Trang 17Let Ai¼ UiSiVTiþ1 be a SVD of Ai, where
@
1CC
A; S0¼
1 0 0
0 ffiffiffi2
p0
0 0 0
0BB
@
1CC
0 21= ffiffiffi
2
p1= ffiffiffi2p
0BB
@
1CC
A;
U1 ¼
ð2 þ ffiffiffi3
pÞ=ð3 þ ffiffiffi
3
p
Þ ffiffiffi3
p
ð ffiffiffi3
p
2 1Þ=6 21= ffiffiffi
3p
ð21 þ ffiffiffi
3
pÞ=ð3 þ ffiffiffi
p
þ 1Þ=6 1= ffiffiffi
3p
0BB
@
1CC
A;
S1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 þ ffiffiffi3pp
0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 2 ffiffiffi3pp
0
0BBB
1CC
C;
V2 ¼
1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 þ ffiffiffi3pp
ð1 þ ffiffiffi3
pÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 þ 2 ffiffiffi3pp
02ð1 þ ffiffiffi
3
pÞ=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 þ ffiffiffi3pp
1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 þ 2 ffiffiffi3pp
1= ffiffiffi2p
ð1 þ ffiffiffi3
pÞ=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 þ ffiffiffi3pp
21= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 þ 2 ffiffiffi3pp
1= ffiffiffi2p
0BBB
1CCC
@
1CA; V0U I; Qi¼ ViQVi
Trang 180 1= ffiffiffi
2
p
1= ffiffiffi2p
0B
@
1CA;
G1¼ A1þ B1V1QVT2 ¼
1 21 1
1 1 2 1 2
0B
@
1CA
Obviously, G0, G1, both are non-singular Thus LIDE with data (37) isindex-1 Now we study the regularity of problems (23) and (24) with data(37) and (38)
@
1CA;
@
1CA;
@
1CA
1CA;
1C
Trang 191CAand
1CCCCCC
Observing that KerðDjC2Q2Þ ¼ KerR; we come to the conclusion that thethree-point BVP is regular, hence, it has a unique solution Simple calc-ulation gives x0¼ ð13; 13; 0ÞT; x1¼ ð1; 22; 22ÞT; x2 ¼ ð21; 28; 25ÞT:
Example 3 Let us consider LIDE (Eq (1)) with the data:
@
1CCCCA
0BBBB
@
1CCCCA
qn¼ ð1; 1; 1; 1ÞT; ðn $ 0Þ ð39Þ
Trang 20Since KerA0¼ Span{ð0; 0; 0; 1ÞT; ð0; 0; 1; 0ÞT; ð0; 1; 0; 0ÞT}; KerA1¼Span{ð0; 0; 0; 1ÞT; ð0; 0; 1; 0ÞT}; KerAn¼ Span{ð0; 0; 0; 1ÞT}ðn $ 2Þ: Itfollows that KerA0 KerA1 KerA2¼ KerAnðn $ 3Þ:
@
1CCCCA
@
1CCCCA
@
1CCCCA
@
1CCCCA
@
1CCCCA
Trang 21@
1CC
@
1CC
A;
qn¼
n121
0BB
@
1CC
The matrices Anhave SVDs: An¼ UnSnVT
nþ1; where
Un¼ 1ffiffiffi2p
0 2 ffiffiffi2
p0
0B
@
1CA; Sn¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2n2þ 2
@
1CA;
Vnþ1¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi1
n2þ 1p
@
1CA
Trang 22Observing that rankA0¼ 1 , rankAn¼ 2 ðn $ 1Þ we get a LIDE with decreasing ranks Putting
@
1CA; QnU Q ¼
0 0 0
0 0 0
0 0 1
0B
@
1CA; Pn¼ I 2 Qn
ðn $ 0Þ; V0¼ I:
We find
~G0¼ A0þ B0V0Q0VT
@
1CAand
~
Gn¼ Anþ BnVnQnVT
nþ1¼
1 2 2nan n þ 2an 0nðn22 2nÞan ð2n 2 n2Þan n
1 þ nð2n 2 3Þan n 2 ð2n 2 3Þan 0
0B
@
1CA
where an U ðn22 2n þ 2Þ21=2ðn2þ 1Þ21=2: Since det ~G0¼ 21; det ~Gn¼nð2n 2 1Þðn2þ 1Þan–0 ðn $ 1Þ; the Corollary of Theorem 3 implies thesolvability of LIDE (Eq (1)) with data (40)