1. Trang chủ
  2. » Thể loại khác

DSpace at VNU: On linear multipoint boundary - value problems for index-2 differentiable - algebraic equations

5 68 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 2,26 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

VNU JOURNAL OF SCIENCE, Nat Sci., t.x v... they will bo om itted... Therefore, condition 2.2 of Theorem 2.1 is not valid.. Anh for suggesting the considered topic and several helpful dis

Trang 1

VNU JOURNAL OF SCIENCE, Nat Sci., t.x v - 1999

O N L I N E A R M U L T I P O I N T B O U N D A R Y - V A L U E P R O B L E M S

F O R I N D E X - 2 D I F F E R E N T I A B L E - A L G E B R A I C E Q U A T I O N S

N g u y e n V a n N g h i

Fnciiky o f Mcìthcỉiiỉìtics

College of Natiirai Sciences - VNU

A b s t r a c t T h i s p a p e r deals w i t h j n u l f i p o rn t B V P i i f o r l i n e a r iride.r~2 D A E s It fios been s h o w n t h a t t he 7'esulfs o b l a n ỉ e d by ỊSj f o r f r a n s f e r a b l e DAPJs cmi be (’.rlciidrd to

l i n e a r t i m e v a i ' y m g i n d e x ~ 2 s y s t e m s

I IN T R O D U C T IO N

Consider th e following m ultipoint b o u n d a r y - v a lu e problem (B V P) for linear (liffoi-

en tial-a lg e b ra ic equ atio ns (DAEs):

L.r A{ f ) x ^ + B { t ) x - ry(/), / e J := [/(),T] (1.1)

■'to

where A, B e C ( J , are continuous m a trix - v a lu e d functions, // E D V ( J W ^ ' ‘) is

a m atrix - valued function of b ounded variations, (]{f) ^ c := C ( ( J ,R ^ ') and 7 E K ” aio

given function and vector respe^ctively

By the Riesz th e o m ii, the left han d side of (1.2) represents a goneial form of liiK'Hi bounded op erato rs from c to R “

In w h a t f ol lo ws , Wf* russumo t h a t D A E ( 1 1) w i t h tli(' pair { A , B \ is tractal)ì(' w i t h

index 2 , i.e., (sec [1, 2]):

1) T h e re exists a continuously differontiablc p r o je c to r " function Q € c ’ (.7, ) i

Q'^(t) — Q{t), such t h a t Koi A{f ) for evory f e J.

2) T h e m atrix Ai { t ) = ^ o ( 0 + ^ o ( 0 Ọ ( 0 ' Ao := -4, i ?0 ~ B ~ A P \ is singular

and the m a trix yl2(0 ( 0 + ( 0 (0> whore Q\ {f ) tloiiotcs a projoction o nto

the nnllspace Koi (Bo - A q [ P P x Ỵ ) P is nonsiiigular for all t e [/(),T

D enote by p an d P\ the oporatoi'S I — Q and Ỉ - Q\ rosportivel\' O h \’iously, p and Pi aro also p ro jecto r functions satisfying lolations: p e c * (J, P Ọ = Q P

-P\Q\ — Q \P \ — 0 Since ( 1.1) can be refornmlatecl as Ấ [(P.r)' - P'x] +z?.r = q, wo sliould

look for solutions belonging to the Banach space

X : = { x e C { I R n : P-r

K e y words and phrases D A Es, index 2, m u ltip o in t BVP, N oether o p erato r.

30

Trang 2

w ith the norni X :r oc

Let Q\ G C ’ ( J , K " ’*” ) and without loss of generality, we can suppose that Qi is a canonical projpction satisfying Q i Q = 0 It follows from the last relation th a t P P ị X =

FP] P r e C ‘ ( J , R " ) Lot Y { t ) be a fundam ental solution of the following O D E :

Y ' = [(PP,)' - PPiA^ ^B ]Y-, Y{ s , s ) = I.

D enote by X ( t , s ) tlio m atrix M( f ) V ( t , s ) P{ s ) Pi {s), where M{ t ) := I + Q ị Q Q i i P Q i Ỵ

- A A ; ' Z ? ] P P , thou X( f s ) is a solution of th e homogeneous I V P :

A ( t ) X ' + B ( t ) X = 0 ; P{ s ) P, { s ) [ X{ s s ) - I ] = 0

It has been proved t h a t Ker X { t , s ) = Kor P{ s ) Py{s} for all t , s e {fo,T] Moroover, the

Ỉ V P :

-4(0.r' + B{t).r = q{t)- P{to)Pi ito){x{fo) - T o) = 0, has a Iiniquo solution of the form (cf [2]):

r{f ) = X { t J o ) r o + X { f J o ) [ X Ự o t ) h( r ) d r q { f ) ,

■ho

h( f ) = P P A ^ ' q + [ P P y Y P Q A ^ ' q , ( 1,3 )

W'hcie

and

W ) ■ ■ = {PQi + Q P i ) A ^ \ ] + Q Q , { P Q i A ^ ^ q Y - Q Q , ( P Q y Y P Q i A ^ ' q (1.4)

For investiftatiug imiltipoiiit B V P ( 1.1), (1.2), the technique described in [3] can he ap-

plied Since proofs of most s tatem e n ts in this article can be can io d out in similar ways as

m 1] they will bo om itted

ĨĨ U K C Ì U A T Ì \ Í I I Ĩ T Ĩ P 0 Ĩ N T Ĩ W P

We cleiiotí' bv D t h r shootiiig m atrix í/a/(/) vY(^/()) and by 7^0 i'll** following

suhs('t o f K";

T h e o r e m 2.1 PiuiAcni (1.1), ( Ỉ 2) is Iiniquelv sulvalilc un Ả' Ĩ U I a n v q G c Hiid 7 e TZq

if aiid oaJy if tiic shooting m a tr ix D satisfies cuiiditions:

Kci D = K c i A ự o ) 0 K c i A ị ( t o ) = Kei Pựị )) Pi ị to),

ỉ I U D =

TZo-In particular, W P can consider tlip followiníỉ, m ultipoint condition:

Ì l )

r r : = ^ ơ , r ( ^ ) = 7 ,

7 = 1

( 2 1 )

( 2 2 )

(2.3)

whero fo < 1 1 < t '2 < ■ ■ ■ < < T and D, e (/: = l,? n ) arc given constant matricos

Trang 3

32 N g u y e n Van Nghi

C o r o l l a r y 2.1 Piulììciii (1.1), (2.3) is uniquely suluihlc on ,v for iiiiy Í/ G c iiiid Ị 6

Ĩ Ì Ì

D -2 D , „ ) i f ỈÌIICỈ o n l y i f t h e s h v u t i n g n i H t r i x D = y " D , S Ht i s t e s

conditions:

1.= 1

Kei D — K crA (fo) 0 Kci A i(fa) = K c r P (f o ) Pi(/())

7h jD - I w ( D ị , , D,„)

III IR R E G U L A R M U L T IP O IN T BVP

In this section, W(> suppose th a t condition (2.1) a iu i/o r (2.2) a n ' not satisfif'd Consider a linear bounded o p erato r £ acting fioiii Af to y := CỊ.,^X R ” (lofined by:

/ L.r

V t

C t : =

where •= {'/ e c ; Q i A 2 ^q e c * } and \\q ;= q oo + IVi

Ker P(^o)-Pi(^o) c Kei D, for the sake of simplicity wo can suppose th a t

dim A'er p ự o ) Pị ị t o) = u < dim K e r D = p.

Lot be an o ith o n o n n a l basis of Ke i P { t o ) P ị { t o ) — ^I.i- 'vhoiT th('

OI-thonorm al basis of Ker D Define a colum n m a trix ỉ>(/) := (ip^+i{f) , ỌpỰ)) with (/?,(#) = X{ t , t o ) i J ° {i = u + l , p ) and p u t M := r/^ Ir is easy to prove

th a t M is nonsingular and -Y can be decomposed into a direct sum of clospd suhspac os:

Af = K e r C e K c i M , w h e r e ( U T ) ( t ) : = ^ ( t ) { s ) r { s ) d s a nd K ei £ = {.r =

i > ( ‘ I I X { p ~ I ' ) / / -A n I i i t i l 1

/ respectively

T h e o r e m 3 1 The folloxving stateinents hold:

i) c : A! y is a bounded linear Noether operator,

= - á ì m ị K e i A{fo) & K e v Ai { t o) } = - d i m Kor P (/o) Pi (^i).

it) Problem (1.1), (1.2) is solvable on X t f and only i f the given data {r/,7 } •sa/z.s/y

condition:

v r ( 7 - f

‘Ito

where f { t , t o ) ■= X ( t , t o ) f ' X{ t o , T ) h ị r ) dT + q{t) a n d h ( t ) , q{t) are difijied by (1.3), (1.4) respectively.

i n ) A general solution of ( l l ) j (1-2) is o f the forrri:

x { t ) = X { t t o ) { x o + W o a ) + / ( / , t o) + m o

Trang 4

whem .7-0 = a = - A / - > { t ) { X ( t J o) x o+f { f , f o) } df,

a e is mi arbitrary vector and D denote the restriction of D onto h n D ^ '.

4 E x a m p l e s

Consider s y s t P i n (1.1) with the following data:

/ 1 0 0 \

0 1 0

V o 0 0 /

B =

/ 0 - 1

\ 1 - ^ 1

- n

- t

0 /

q e C i J ^ R ^ ) - J : = 0, 1

A simple co m p u ta tio n shows that:

Q = 0 0 0 ; ip — 0 1 0 ; A 1 — 0 1 - f

i / Suppose tliat:

111 ttiis case the shooting m atrix is of the form:

( h l ( f ) X { f ) ^

D =

■>0

0 r - 2 0

Sinc('

(4.1)

(4.2)

Ker D = Kvv P(0) Pi (0) = Span { ( 1 ,0 , (1, 0, 0)^};

I n i D = TZo = S p a n { ( 0 , 1, 0 )^ },

it follows from Theorem 2.1 t h a t Problem ( 1.1), (1.2) w ith d a t a (4.1), (4.2) is uniquely

s o lv a b le fo r o v e i v (] G C ( J , K ^ ) a n d 72 G K

ii/ Now let

0 1 0

\ 0 0 0 /

Trang 5

T he shooting m a trix D is defined as:

D = / đr ì { t ) X{ t ) = 0 e - 2 0

Thus, K e v D = K e r P ( 0 ) P i ( 0 ) = S p a n { ( l, 0, 0 ^ ; (0,0,1)'^'}, but Im D = Span { ( 1 - e , e -

2 ,0 )^ } 7^ Teo = S p a n { ( l , 0, 0)"^; (0, 1, 0)'^} Therefore, condition (2.2) of Theorem 2.1 is not valid Using T h eo rem 3.1, p art (ii), we comp to tho following necessary and sufficient condition for th e existence of solutions of (1.1), (1-2) with d a t a (4.1), (4.3):

( e - 2 ) / e ' l [ { I - T ) e ^ [ { T - l ) q i { T ) + { t ^ - ì ) q 3 Ì r ) ] d T \ d t +

Jo '■ - 'o

+ { 2 - e ) f {(1 - t )qi {t ) + Qiit) + q3 { t ) }dt +

Jo

Jo

= (2 - e)7i + (1 - e)72.

A c k n o w l e d g e m e n t T h e a u th o r th a n k s DSc, p K Anh for suggesting the considered topic and several helpful discussions

R E F E R E N C E S

1] R, Maz O n linear differential - algebr aic equations and linearizations J Appl.

Num Math 18(1995) 267-292.

Ị2 11 L a u i o u i A b l i u o V i i i g I i i c t l i o d f o i f u l l v u i i p l i c i t i i u l i ' x 2 D A E o S I A M J S e t

Comput 1(1997), 94-114

Math.,2b 4(1997) 347 - 358.

TAP CHI KHOA HOC ĐHQGHN, KHTN, t.x v , n ° l - 1999

V Ê BÀI T O Á N BIÈN N H IEU DIEM ĐỐI V Ớ I P H Ư Ơ N G T R ÌN H VI P H À N ĐẠI số CHỈ số 2

N g u y ễ n V ă n N g h i

Khoa toán Đại học Khoa học T ự nhiên - DH Q G Hà Nội

Bài báo đề cập đ ế n bài to án biên nhiều đ iểm đối với p h ư a n g trình vi p h ân đ ạ i số chì số 2 K ết q u ả chính củ a bài báo là chì ra rằ n g kết quả nhận đư ợc bới [3] đối với cỉii

số 1 có thể m ờ rộng lên cho p h ư ơ n g trìn h chỉ số 2

Ngày đăng: 15/12/2017, 00:47