1. Trang chủ
  2. » Thể loại khác

DSpace at VNU: On the lateral oscillation problem of beams subjected to axial load

10 122 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 3,22 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

It illustrate?. he “butterfly" effect of the Chaos phenomenon.

Trang 1

VNU JOURNAL OF S C IE N C E , Mathematics - Physics, T.xx, N04, 2004

ON T H E L A T E R A L O S C I L L A T I O N P R O B L E M O F B E A M S

S U B J E C T E D T O A X IA L L O A D

D a o H u y B ic h

V ietnam N atio n a l University

N g u y e n D a n g B ic h

Institute for B u ild in g Science a n d Technology - M in is tr y o f Construction

A b s t r a c t: This paper approaches the problem of la te r a l o s c illa tio n of beams subjected to axial load by m eans of seeking the exact so lu tio n of the lin e a r Math.eu

equation with the periodic function h(t) having a d eterm in ed form

However when h(t) — k + ajcosiot, the equation (1) does not p o s s e s an exact solution but with the v a lu es of param eters k, a lf 0) satisfying som e d e te r m in e d conditions, we can seek an approximated solution Obtained results are s u m m a r iz e d as follows:

The general exact solution for the equation (1) with h(t) h a v in g a determ ined form can be expressed in the form of known m athem atical fu n ctio n s It illustrate? he

“butterfly" effect of the Chaos phenomenon.

The condition and algorithm for finding the approxim ated so lu tio n of the e q in to n (1) with

From obtained results we can discuss about the o scillation of b e a m s.

1 L ateral o s c i ll a t io n o f b e a m s s u b j e c te d to a x i a l lo a d

Fig 1 shows th e oscillation of

a beam h a v in g c o n s ta n t cross

section subjected to axial load P(t)

El, EA, ỊI, t a n d p re p re s e n ts th e

bending a n d axial rigidity, m ass

dam ping coefficient of th e beam

respectively

T U"'1='W

W(x.i)

F ig l A b e a m su b je cted tc axial load

The oscillation of th e beam can be described a s follows [2]

E Iw IV + pw + |IW - EA

W IV w 11 - t h e 4th a n d 2nd o r d e r d e r i v a t i v e s o f w w i t h r e s p e c t t o X,

w w - th e 2nd and 1 st order derivatives of w with re sp e c t to t

The b o u n d ary conditions for d isp lacem en t a re w r i t t e n as

1

Trang 2

2 D a o H u y B ich y N g u y e n D a n g B i c h

1 IS a s s u m e d t h a t th e ax ial w ave is negligible a n d U (£, t) is th e d isp la c e m e n t

a t t h e r i g h t e n d of th e b e a m T h e boundary co n d itio n s (1.2) c a n be sa tis fie d w hen w(x It)is set as

Substitute (1.3) in to (1.1) it yields

where

q ( t ) = u ( ể , t ) ^ ; (0, y = 7 — V ; 2D©! = J i

Ii order to in v estig ate the phenomenon in the oscillation of beam s subjected to axial lad s, at first th e following equation should be exam ined

u + C 0 j [ l + q ( t ) ] u = 0 ( 1 5 )

I'q(t) = a coscot, the equation (1.5) leads to the classical M a th ie u ’s equation

I S u j p l e m e n t a r y e q u a t i o n

C m sid er th e follow ing s e t of e q u a tio n s [3]

Ú

V =

u - a

tn v h i a V, u a r e fu n c tio n s of t; x, a, Cl) a re p a r a m e t e r s

A te r V b e in g e lim in a te d from (2.1), (2.2) it yields

( 2 2 )

u - a ( u - a )

Iiste a d of th e fu n ctio n V, fun ctio n y is u sed , w ith th e follow ing a lte ra tio n :

y F'om (2 2), (2.4) y can be calculated

1

Trang 3

On the la te r ạ l o s c i ll a t io n p r o b l e m of 3

Using (2.4), (2.5), th e e q u a tio n (2.1) can be w r i t t e n a s

ý + to2y = X

The solution of (2.6) is

CO

w here cp, A - in te g r a l c o n s ta n ts

E q u atio n (2.3) can be a l t e r n a t e d in to th e form:

— (ú2) - -— ù 2 = -2Ằ.(u - a ) 2 + 2oýí(u - a ) ,

d u u - a

t h a t yields

Ũ2 = -y(u - a f (u - a f - — (u - a ) +

CO

7 - integral co nstan t

After solving (2.9) it can be found t h a t

CO

u - a

x + pcos(cot + \\i)

w here vy - in te g r a l c o n s ta n t,

p 2 = X2 - (02y > 0.

(2.6)

(2.7)

(2.8)

(2.9)

'2 1 0 )

(2 1 1

From (2.5), (2.7), (2.10) it can be in fe rre d th a t:

y = -!T [?i + pcos(a)t + n/)], CD

A _ p

A = - iy tp = Vị/

CO

O u r aim is to find a n y s u p p l e m e n ta r y M a t h ie u ’s e q u a tio n w hich h a s a n exsci solution D iffe re n tia tin g th e e q u a tio n (2.9) w ith r e s p e c t to t we o b tain

ii = - (u - a)[2y(u - o f - 3>t(u - a ) + a)2 j.

and from (2.5) we h a v e

a y + 1 a y + 1

B ased on (2.14), e q u a tio n (2.13) can be w r itte n in th e form

(Ỉ.1 3

(Ĩ.14

0 5

S u b s t it u t e u - a c a lc u la te d i n (2.10), y c a lc u la te d in (2.12) w ith Vị/ - O u t (2.15) it yields

Trang 4

4 D a o H u y B i c h , N g u y e n D a n g B ic h

3 S o l u t i o n a n d c h a r a c t e r i s t i c o f t h e s o l u t i o n

E q u a tio n (2.16) h a s th e following p a r t i c u l a r periodic so lu tio n

u CO2 + aX + a p cos cot

X + p coscot = a +

CO

W hen th e p a r t i c u l a r so lu tio n (3.1) is found, th e g e n e r a l so lu tio n for eq u atio n (2.16) can be e s t im a t e d a s follows

11 = CO2 + CLẤ + aPcoscot

+ (3 coscot c , + c -J o(a)2 + aA, + aPcoscox)~ (a + pcoscox)2dx

in which Cj, C2 - in te g ra l c o n stan ts

From (3.2), th e velocity Ú a n d a c c e le ra tio n ii can be c a lc u la te d

(3.2)

pco3 sin cot (a + pcoscot)2

t

c , + c 2 J

0

(x -f Pcoscox)2dx

(co2 -f aẰ + apcoscox)"

(x + |3cos(ox)2dx

0 (co2 + aX + apcoscoxV

I t is a s s u m e d t h a t w h e n t = 0

u(0) = u 0, ú(0) = ú 0

(3.3)

.(3.4

(3.5)

B ased on th e in itia l c o n d itio n (3.5), from (3.2) a n d (3.3), th e in te g r a l c o n sta n ts

Cj, C2 can be found:

Hence, it can be concluded t h a t (3.2) is th e g e n e ra l so lu tio n for (2.16)

B ased on (3.2), (3.3) th e g r a p h s of th e fu n ctio n s u(t) a n d u(u) with d ifferent

p a r a m e te r s can be p lo tte d a s show n in Figs 2-5

T h ere e x ist c o n s t a n t m a x im a a n d m in im a of t h e fu n c tio n u n d e r th e in te g ra l in (3.2) T h erefo re, it can be proved t h a t th is in te g r a l be g e n e r a liz e d diverse w hen t-»co From Figs 2-5, it can be ob serv ed t h a t th e so lu tio n u(t) e x p re ssed in (3.2) have th e c h a r a c te r is tic of

• D iffusively v a ria b le lim u(t) = 00

t —>00

T he so lu tio n (3.2) d e p e n d s se n sitiv e ly on th e in itia l b o u n d a ry condition

w hen jr0 = 0 it is periodic, w hen jr0 * 0 it h a s th e exceptional characteristic

of th e effect n a m e d “b u t te r f ly ” a s seen in th e “c h a o s ” p h e n o m en o n

Trang 5

On the la te r a l o s c i lla tio n p r o b le m of 5

Fig.2 G ra p h of function u(t)

Fig.3 G ra p h of function ú(u)

Fig.4 G ra p h of function u(t)

4 P o t e n t i a l o f e q u a t i o n (2.16)

In e q u a tio n (2.16) th e following fun ctio n is called p o t e n t i a l of th e e q u a tio n

( x + p cos cot)2 Ằ + P c o s c o t CO2 + (XẰ + a p COS cot

W ith th e following c o n d itio n

th e p o te n tia l fu n ctio n h(t) is c o n tin u o u s a n d periodic

Fro m (4.1) yields

Trang 6

6 D a o H u y B ic h y N g u y e n D a n g B i c h

dh

dt

(aẰ, + a p c o s cot)3 (aA 4- aP co s wt)2 (co2 4- aX + a p c o s c o t ) 2

a P sin c o t (4.3)

t h a t can be r e a r r a n g e d as

dh

d t

I ( c o s 0 ) t ) - —r

-rr-(aA + aPcoscot)3(co2 + aA + a(5 coscot|

(4.4)

n which

f(cos cot) = cos3 cot - 3 — cos2 cot

p

7 -V + 3 —- — + 2

A CO A _ A , (0

- r + - - 5 - - 6 — - 4

dh

L et —— = 0 only w h e n sin cot = 0 , from (4.4) it can be se en t h a t

dt

f( cos cot) * 0 w ith all t such t h a t -1 < coscat < 1

In o rd er to s a tis fy (4.6) th e following p r e lim in a r y r e q u i r e m e n t c a n be used

in which

f(i)=

8 + 0)

CO

a p

CO

(4.6)

I (4.7)

(4.8)

(4.9)

From th e c o n d itio n (4.7) to g e th e r w ith (4.8), (4.9) it y ield s

2

2 — > 8 + p

2 - < - 8 p

CO

a2p2+ 68 - a p , or

- - 5 - + 68 - — - , or

a p

8 5 Ụ + 68 — < 2 — < 8 + J ^ 2 + 68

0)

a p

(4.10)

(4.11)

(4.12)

W hen a n y of th e c o n d itio n s (4.10), (4.11), (4.12) is sa tisfie d , th e p re lim in a ry

re q u ire m e n t (4.7) can be a s s u r e d However, in o rd e r to fully sa tis fy (4.6), th e g raph

of th e function h(t) sh o u ld be p lo tted , in w hich th e se t of p a r a m e t e r satisfied (4.7) is used The c rite rio n for (4.6) b e in g fully sa tisfie d is s e t su ch a s it h a s one m axim um and m in im u m only in a period w h en sin cot =0

To solve th e above m e n tio n e d problem , h(t) is a p p ro x im a te d by g(t) such as both fu n ction s a re c o n tin u o u s a n d periodic

Trang 7

On the la te ra l o s c illa tio n p r o b le m o f . 7

W hen any of t h e c o n d itio n s (4.10), (4.11), (4.12) is s a tis fie d , h(t) a n d g(t) w ould

h ave obtained th e sa m e m a x im a a n d m in im a w h e n sin cot =0 H ence, it can be inferred t h a t th e fu n ctio n h(t) be a p p ro x im a te d by g(t) w h e n t h e i r m a x im a a n d

m inim a are resp ectiv ely eq u al

W hen coscot = -1, we h a v e

2yco2 2 a y + 3 Ả CO2 + 3 a k + 2 a 2y _ k a ( 4 1 4 ) ( ả - p ) 2 X - p (02 + a X - a P

W hen coscot = 1 , we have

2yco2 2 a y + 3Ả CO2 + 3 a Ả + 2 a 2Ỵ = k +

From (4.14) a n d (4.15) it h a s

1 •

a i =

a p

2

CO

k =

-CO

2 CO +

2 a 2y - aA CO2 + 3aX, + 2 a Y

CO2 + 2 a X + a 2y

0.)^ ■+■ 3aA, + 2 a

a 2y

a 2X, CO2 + 2 a X + a Y

2y \ ( ờ 2 + aA )

Based on (4.16), (4.17) it yields

CO

a p

k + a

X

2 - 1

p2

Ằ.

+ a

a p p

—— + — + 1 = +

(4.15)

(4.16)

( 4 1 7 )

(4.18)

( 4 1 9 )

W ith know n v a lu e s of a 1; k a n d CO, th e v a lu e of — a n d — can be found by

solving the set of e q u a tio n (4.18), (4.19)

5 A lg o r ith m fo r f i n d i n g t h e a p p r o x im a t e d s o l u t i o n

Given t h a t th e following e q u a tio n should be solved:

T he following a lg o r ith m for fin d in g its a p p ro x im a te d so lu tio n should be followed:

Trang 8

8 D a o H u y B i c h , N g u y e n D a n g B i c h

• Solving th e set of e q u a tio n (4.18), (4.19) w ith th e v a lu e s of CO2, k, a, given in

(5.1), we o b tain th e v a lu e s of — , —

» C hecking th e co n d itio n s (4.10), (4.11), (4.12 ) If none of th em are satisfied, the a p p ro x im a te d so lu tio n c a n n o t be found by t h is proposed alg o rith m If

th ese conditions a re satisfied we plot th e g r a p h of th e fun ctio n h(t) w ith the identified set of p a r a m e te r s

• If the function h(t) does not posses a m a x im u m a n d a m in im u m only when sin cot — 0, th e a p p ro x im a te d so lu tio n c a n n o t ỒG found by th is proposed algorithm

» If the function h(t) satisfies the abovem entioned condition, form ula (3.1 ) with its respective p a ra m e te r s can be considered as th e solution of (5 1)

E x a m p l e 1.

Find the a p p ro x im a te d solution of th e following e q u a tio n :

ii - 4(0,0 0 6 5 9 - 0 ,0 3 3 4 1 5 COS 2 t) u = 0 (5 2 ) Substitute

intc(<- (4*19), th e r e s u l ts a re

N th the set of p a r a m e t e r s (5.4), condition (4.10) is sa tisfie d

?iom (2.11) a n d (5.4) it can be in fe rre d th a t:

a p = - 1 ,1 9 ; a X = - 1 4 ,2 8 ; cry = 5 0 , 6 2 5 5 8 (5.5)

ỉísed on (5.5), (5.3) th e g r a p h s of h(t), g(t) can be p lo tte d a s show n in Fig 6 Fron olere, it can be show n t h a t th e fun ctio n h(t) h a s only a m a x im a a n d a m inim a whin s n 2 t — 0 The fu nctions h(t), g(t) have id en tica l v alu es of m axim a and

m in n a which a re th e a p p ro x im a tio n of each resp ec tiv e o th e r T h erefo re, it can be

s o l i t i > n o f ( 5 1 )

u = (*■ t P k CO2 + a X + a p c o s cot

}e a p p io x im a te d so lu tio n (5.6) resp ec tiv e to th e p a r a m e t e r s identified in (5 5 }ai the form of

Jib stitu te (5.7) in to (5.2), it is ob serv ed t h a t (5.7) is th e ap p ro x im ate d soliti>nof (5.2)

Trang 9

On the la te r a l o s c i ll a t io n p r o b le m of 9

E x a m p le 2.

Find th e a p p ro x im a te d so lu tio n of th e following e q u a tio n :

ii + 4(0,001783728 -0 ,0 0 7 7 0 2 6 4 9 COS 2t)u = 0 (5.8)

S u b s titu te

CO = 2, k = - 0 , 0 0 1 7 8 3 7 2 8 , a , = 0 , 0 0 7 7 0 2 6 4 9 , '5.9) into (4.18), (4.19), th e r e s u l t s a re

W ith th e se t of p a r a m e t e r s (5.10), condition (4.10) is satisfied

From (2.11) a n d (5.10) it can be in fe rre d t h a t

a p = 7 ,4 8 ; a X = 6 1 , 7 1 ; a 2y = 9 3 8 , 0 4 (S.11)

B ased on (5.9), (5.10) th e g r a p h s of h(t), g(t) can be p lo tte d as shown ii F,g 7 From th e r e it can be sh o w n t h a t th e function h(t) h a s only a m a x im u n a id a

m in im u m w h e n sin 2t = 0 T h e fu n ctio n s h(t), g(t) h a v e id e n tic a l values of tr a u m a

a n d m in im a, w hich a r e th e a p p r o x i m a t i o n of each r e s p e c t i v e other Therefo'e it Can

be concluded t h a t (3.2) w ith th e co n d itio n s u(0) = u 0, ủ(0) = u0 = 0 s th e

ap p ro x im a te d so lu tio n of (5.1)

938.04 0.001783728 -0.0'702i49

K Fig.7 Graph of function h(t), g(t) wih - = 82!

(x + p)u0 CO2 + aX 4- q p COS cot

The a p p r o x im a te d so lu tio n (5.6) resp ec tiv e to t h e p a r a m e t e r s ldeitfi.d in (5.5) h a s th e form of

1

Fig 6 Graph of function h(t), g(t) with p = 12

Trang 10

10 D a o H u y B i c h, N g u y e n D a n g B i c h

_ A Qy1r Q/l 6 5 , 7 1 + 7 , 4 8 C O S 2 t

U 1 = 0,94534u0 X — — — l ỉ l r - ( 5 1 3 \

S u b s titu te (5.13) into (5.8), it is observed t h a t (5.13) is th e a p p ro x im a te d solution of (5.8)

6 D is c u s s io n

In order to satisfy (4.6), th e condition (4.7) p lay s only a role of p re lim in a ry

Ĩ e q u i r e m e n t , b u t it IS p o s s i b l e to e s t a b l i s h a m o r e p r e c i s e c o n d i t i o n h o w e v e r m o r e

c o m p l e x in c a l c u l a t i o n

The accuracy of above m entioned approxim ate m ethod d ep en d s on th e ratio

-p '

From o b tain ed r e s u lts for u(t), the d is p la c e m e n t w(x, t) of b e a m s can be found

A c k n o w l e d g e m e n t T h is resea rch is com pleted w ith th e fin a n c ia l s u p p o r t of the

N ational Council for N a t u r a l Sciences

R e fe r e n c e s

1 Nguyen V an Dao, T r a n Kim Chi, N guyen D ung, “C h a o tic p h e n o m e n o n in a

n o n lin e a r M a th ie u o silla to r”, Proceeding o f the S e v e n th N a tio n a l C ongress on

M echanics, Hanoi, 18-20 December 2002, T l, pp 40 - 49

2 W eidenham m er, F “Biegeschwingugen des S ta b le u n ter axial p ulsierender

Z u fa llsla st" V D I-B rinchte Nr: 101 - 107 1996

3 Dao Huy Bich, Nguyen Đ ang Bich, “On th e m eth o d so lv in g a class of n o n -lin e ar

differen tial e q u a tio n s in m echanics”, Proceedings o f the s ix th N a tio n a l Congress

on M echanics, Hanoi Dec, 1997, pp 1 1 - 17

4 G ra n in o A Korn, T h e re sa M Korn, M a th e m a tic a l h a n d b o o k fo r sc ien tist a n d

engineers, M cGraw-Hill Book Com pany, 1968.

Ngày đăng: 14/12/2017, 14:46

🧩 Sản phẩm bạn có thể quan tâm