1. Trang chủ
  2. » Thể loại khác

DSpace at VNU: On a semilinear boundary value problem for degenerate parabolic pseudodifferential equations

5 136 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 247,02 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

© Pleiades Publishing, Ltd., 2009.Published in Russian in Doklady Akademii Nauk, 2009, Vol.. In this article a semilinear boundary value problem is studied for a degenerate parabolic pse

Trang 1

ISSN 1064–5624, Doklady Mathematics, 2009, Vol 80, No 1, pp 482–486 © Pleiades Publishing, Ltd., 2009.

Published in Russian in Doklady Akademii Nauk, 2009, Vol 427, No 2, pp 155–159.

In this article a semilinear boundary value problem

is studied for a degenerate parabolic pseudodifferential

equation The main result generalizes the famous

theo-rem of Agranovich and Vishik (see [1]) We prove the

existence of a solution using the Rothe theorem on a

fixed point (see [2])

1. Let p∈ (1, ∞), l∈+, q = µ + iτ∈, µ≥ 0, d≥ 1,

d∈ , δ = (δ1, δ2, …, δn – 1, 0), δi≥ 0, i = 1, 2, …, n – 1

For each ξ' = (ξ1, ξ2, …, ξn – 1) ∈n – 1, x n ∈ +, set

Define the Laplace transform

ξ' q,

( )δ,d ξi

p/ 1( + δi)

x n pδi

i= 1

n 1

,

=

ξ' x, ,n q

p

x n pδi

i= 1

n 1

,

=

n 1u' xn, ,q)

2π ( )(n 1 ) /2 - ei x'〈 ,ξ'〉u x' x( , ,n q)d x',

n∫1

n 1v' q, )

2π ( )(n 1 ) /2 - ei x'〈 ,ξ'〉v(x' q, )d x'.

n 1

The space H(l, p, δ)(n – 1) is defined as the comple-tion of the space (n – 1) with the norm

The space H (l, p, δ)( ) (l ∈ +) is defined as the

completion of the space P( ) = {u ∈ (n ): suppu

} using the norm

The space P l, p (d, µ, δ, × (0, +∞)) is defined

as the completion of the space P(n ) = {u ∈ (n ×

(–∞, +∞)): suppu ⊂ × (0, +∞)} with the norm

2π ( )1/2 - eqt u x t( , )d t.

0

+ ∞

=

C0∞

v

l p dδ n 1 , , , ,

= 1( + (ξ' q, )δ,d)lp

n 1v' q, ) p

ξ'

d

n 1

+

n

+

n

C0∞

+

n

u l p d, , , ,δ +

= 1( + (ξ' q, )δ,d+ (ξ' x, ,n q)δ,d)(lj)p

0

+ ∞

n∫1

j= 0

l

∫ × D n

j

n 1u' xn, ,q) p

x n dξ'

d

⎞ -1p

+

n

C0∞

+

n

u

P l p, (d, , , µ δ  + × ( 0 + , ∞ ) )

= 1( + (ξ' q, )δ,d+ (ξ' xn, ,q)δ,d)p l( –j)

0

+ ∞

 ξn' , τ

j= 0

l

∫ × D n

j

n u e( –µt u x t( , )) ξ( ' xn, ,τ) p

x n dξ'dτ

d

⎞1 -p

MATHEMATICS

On a Semilinear Boundary Value Problem

Yu V Egorova, Nguyen Minh Chuongb, and Dang Anh Tuanc

Presented by Academician V.S Vladimirov February 18, 2009

Received March 6, 2009

DOI: 10.1134/S1064562409040085

a Université Paul Sabatier, Toulouse, France

b Institute of Mathematics, Hanoi, Vietnam

c Hanoi National University, Hanoi, Vietnam

1 The article was translated by the authors.

Trang 2

The space P l, p (d, µ, δ, n – 1× (0, +∞)) is defined as

the completion of the space P∞(n – 1) = {v∈ (n – 1×

(–∞, +∞)): suppv⊂n – 1× (0, +∞)} with the norm

The space E l, p (d, µ, δ, n – 1) is defined as the

com-pletion of the space P(n – 1) with the norm

The space E l, p (d, µ, δ, ) is defined as the

comple-tion of the space P∞(n) with the norm

The spaces P l, p (d, µ, δ, ∂Ω× (0, +∞)), P l, p (d, µ, δ,

Ω × (0, +∞)), E l, p (d, µ, δ, ∂Ω) and E l, p (d, µ, δ, Ω),

where Ω is a bounded set in n with smooth boundary

∂Ω, are defined in the standard way using a unity parti-tion

2 Consider a pseudodifferential operator L(x, D, q, y)

with a symbol

where m ∈+, γi = 1 + δi , i = 1, 2, …, n, lα≥ 0,

,

supp (·, ξ') ⊂ Kα, where Kα are compact sets inde-pendent of ξ'

Let us introduce the operator

Let us now set

where

supp (·, ξ') ⊂ K j , K j are compact sets independent

of ξ',

A pseudodifferential operator b(x', D', q, d) with a symbol b(x', ξ', q, d) is denned as usually:

3 Consider the problem

(2)

where

C0∞

v

P l p, dµ δ n 1 , , , × 0 + , ∞ )

= 1 (ξ' q, )δ,d)pl

n[e–µt v(x' t, )] ξ( ',τ) p dξ'dτ +

 ξn' , τ

v

E l p, dµ δ n 1

, , ,

( ) v l p q dδ n 1

, , , , ,

p

τ

d

 τ

=

+

n

v

E l p, (d, , , µ δ  + ) v l p q d, , , , , δ  +

 τ

-

=

L x( , , ,ξ q d) aα(x,ξ')x n lαξn

α

qβ,

α +dβ ≤2m

γ α ,

〈 〉 +dβ –lα =2m

=

aα(x,ξ') = aα( )0 ( )ξ' +aα( )1 (x,ξ'),

aα( )0 ( )· C n 1

\ 0{ } ( ), aα( )1(x ·, ) C n 1

\ 0{ }

x

∀ ,∀α

aα( )1 (·,ξ') C0∞( )n , ∀ξ' n 1

\ 0{ },

aα( )1

aα( )0 (λγ1ξ1,λγ2ξ2, ,… λγnn 1) = aα( )0 ( )ξ' ,

ξ'

∀ n 1

\ 0{ }, ∀λ>0,

aα( )1(x,λγ1ξ1,λγ2ξ2, ,… λγnn 1) = aα( )1 (x,ξ'),

x

, ∀ξ' n 1

\ 0{ }, ∀λ>0

L x D q d( , , , )u x q( , ) 1

2π ( )(n 1 ) /2

-α +dβ ≤2m

γ α ,

〈 〉+dβ–lα=2m

= ei x'〈 ,ξ'〉aα(x,ξ')x n lα( )ξ' α'

qβD nαnn 1u' x, ,n q)dξ'

∫n 1

b x'( , , ,ξ' q d) (b( )j0 ( )ξ' +b( )j1 (x',ξ'))q j,

j= 0

k

=

b( )j0 C n 1

\ 0{ } ( ), b( )j1 (x' ·, ) C n 1

\ 0{ }

x'

∀ n 1

, j∀ ,

b j

1

( )

·,ξ'

( ) C0∞( )n , ∀ξ' n 1

\ 0{ }, j,

b( )j1

b j

0

( )(λγ1ξ1,λγ2ξ2, ,… λγnn 1) λkdj

b j

0

( )( )ξ' ,

= λ

∀ 0, ∀ξ' n 1

\ 0{ },

>

b( )j1 (x',λγ1ξ1,λγ2ξ2, ,… λγnn 1) λkdj

b( )j1 (x,ξ'),

= λ

∀ 0, ∀ξ' n 1

\ 0{ }, x'∀ n 1

>

b x' D' q d( , , , )v(x' q, ) 1

2π ( )(n 1 ) /2 - e i x'〈 ,ξ'〉

n∫1

=

×b x'( , , ,ξ' q d)n 1v' q, )dξ'

L x( n, , ,D q d)U x q( , ) F x q( , ), x +

n

=

B j(D q d, , )U x q( , ) x= 0 = G j(x' q, ),

j = 1 2, , ,… m,

Trang 3

Set l0 = max{2m, m j + 1}, (x n , D, q, d)u = (L(x n , D, q,

For l l0, we set

Proposition 1 The operator (x n , D, q, d) is

bounded from the space E l, p (d, µ, δ, ) to the space

E l, p (d, µ, δ, , n – 1 ).

The operator (x n , D, q, d) and problem (1), (2) are

elliptic, if

(i) L0(x n, ξ, q, d) = (ξ') ξαqβ≠ 0,

∀ξ∈n , q ∈, |ξ| + |q|≠ 0, ∀x n > 0;

(ii) the equation L0(x n, ξ', ξn , q, d) = 0 has m

solu-tions ξn with positive imaginary parts for x n > 0, |ξ'| +

|q|≠ 0;

(iii) the Cauchy problem

has a unique solution, tending to 0 as x n→ +∞ for any

h j∈

Proposition 2 Suppose that L0(x n, ξ, q, d) ≠ 0, ∀q

, |ξ| + |q| ≠ 0, ∀x n > 0, and the equation L0(x, ξ', ξn,

q, d) = 0 has m solutions ξn with positive Imξn for |ξ'| +

|q|≠ 0, x n > 0 Then the space Nξ', q of solutions to the

equation L(x n, ξ', D n , q, d) v (x n , q) = 0 has dimension m,

with the base Φ1(ξ', x n , q), …, Φm', x n , q) and Φk(ξ',

L x( n, , ,D q d) aα( )ξ' x n

lαξα

qβ,

α +dβ ≤2m

γ α ,

〈 〉+dβ–lα=2m

=

\ 0{ } ( ), aα(λγ1ξ1,λγ2ξ2, ,… λγnn 1)

= aα( )ξ' , ∀λ 0, ∀ξ' n 1

\ 0{ },

>

B j' q d, , ) b jkl( )ξξ' n

k

q l,

k+dl=m j

=

\ 0{ }

b jkm(λγ1ξ1,λγ2ξ2, ,… λγnn 1) = b jkm( )ξ' ,

λ

∀ 0, ∀ξ' n 1

\ 0{ }

>

u x

n= 0

E l p, d µ δ +

n

n 1

, , , ,

= E l2m,p (d µ δ +

n

lm j 1 p

-– (d, , ,µ δ n 1)

j= 0

m

×

+

n

+

n

aα

α +dβ ≤2m

δ α ,

〈 〉 +dβ –lα =2m

L0(x n, ,ξ' D n, ,q d)v(x n,q) = 0, x n>0;

B j' Dn, , ,q d)v(0 q, ) = h j, j = 1 2, , ,… m

D n j

x n , q), 1 k m, 0 j 2m, are continuous in ', x n , q)

Moreover,

Suppose that

Theorem 1 Let  be an ellipic operator If

E l, p (d, µ, δ, α, , n – 1 ) = {(F, G) E l, p (d, µ, δ, α, , n – 1)|F(x', x n ) = 0 for x n > α}, then there exists a

bounded operator R0 from (d, µ, δ, α, , n – 1)

to E l, p (d, µ, δ, , n – 1 ) such that

(i) for any α > 0: R0 is bounded from E l, p (d, µ, δ, α)

to E l, p (d, µ, δ);

(ii) for any α > 0, (F, G) E l, p (d, µ, δ, α), 0R0(F, G) = (F, G) + Q(F, G), where Q is bounded from E l, p (d,

µ, δ, α) to (d, µ, δ, α);

(iii) U E l, p (d, µ, δ, and U(x', x n) = 0 for x n≥α

with some α > 0, then R00U = U.

Proof Remark that (F, G) E l, p (d, µ, δ, α) for almost

all q C, Req = µ, (F, G) H (l, p, δ) and F(x', x n) = 0 for

x n≥α

It is evident that there exists a unique function v', x n),

such that L(x n, ξ', D n , q, d) v', x n) =n – 1 F(ξ', x n , q),

v', x n) = 0, for sufficiently large x n Denote the map: (F, G)  v Then is a

linear bounded map from L p(0, α) to H 2m, p(+) contin-uous in (ξ', q) Set

4 Consider the problem

e c x n

D n

jΦk' xn, ,q) L p

p

k= 1

m

j= 0

2m

detBj' Dn, , ,q dk' xn, ,q) x

n= 0≠0

for ξ' + q ≠0, 0≤ ≤j m–1, 1≤ ≤k m.

+

n

+

n

E l p,

α∪> 0 +

n

+

n

E l p,

l> 0

+

n

R0(F G, ) n 1

1 [θGξ0' q, (n 1F' xn, ,q))

= + 1( –θ)ξ' q1, (n 1F' x, ,n q)n 1G' q, ))],

θ θ ξ(( ' q, )δ,d) 1 if (ξ' q, )δ,d<1

0 if (ξ' q, )δ,d≥2

t

- d

, , ,

n

, t>0,

=

t

- d

, ,

x n= 0 = g0(x' t, ), t>0,

j = 1 2, , ,… m.

Trang 4

Theorem 2 Suppose that the operator (x n , D, q, d)

is elliptic Then for any ψ ∈ (n ) there exists an ε > 0,

such that for 0 < ε≤ε0, there exists a linear operator R

with the following properties:

(i) for any a ≥ 0: R is bounded from the space

(d, µ, δ, a, × (0, +∞), n – 1× (0, +∞)) to

P l, p (d, µ, δ, × (0, +∞));

(ii) for any a > 0, ( f, g) P l, p (d, µ, δ, a, × (0, +∞),

n – 1× (0, +∞))

the operator T: P l, p (d, µ, δ, × (0, +∞), n – 1×

(0, +∞)) → (d, µ, δ, n – 1× (0, +∞)); is bounded;

(iii) if u P l, p (d, µ, δ, × (0, +∞)) and u(x', x n , t) = 0,

for x n a , then

5 Let Ω be a bounded set in n with smooth

bound-ary ∂Ω Consider the problem

(3)

(4)

where {U i, ϕi = 1 is a partition of unity in Ω and

the functions ψi∈ (Ω) are such that suppψi U i and

ψi (x) = 1 in a neighborhood of suppϕi

After the Laplace transform problem (3), (4) goes to

the problem:

C0∞

P l p,

a> 0

n

+

n

+

n

0 x n D

t

- d

, , ,

t

- d

, , ,

⎛ +

–0 x n D

t

- d

, , ,

R f g( , ) = (f g, )+T f g( , ),

where ψε( )x ψ ε–γ1

x1 … ε–γn

x n

, ,

=

+

n

P l p,

l= 0

+

n

t

- d

, , ,

⎛ ⎞ ψε( )x  x D

t

- d

, , ,

⎛ +

–0 x n D

t

- d

, , ,

u = u.

t

- d

, , ,

⎛ ⎞u x t( , ) = f x t( , ), x∈Ω, t>0,

t

- d

, , ,

j(x t, ), x∈∂Ω,

=

t>0, j = 1 2, , ,… m,

}iN=1

C0∞

L x D q d( , , , )u x q( , ) = f x q( , ), x∈Ω,

B j(x D q d, , , )u x q( , ) = g j(x q, ),

x∈∂Ω, j = 1 2, , ,… m.

The operator (x, D, q, d) = (L(x, D, q, d), B j (x, D, q, d)|∂Ω is elliptic at a point y ∈ Ω, if for y ∉∂Ω there is a

neighborhood U ∩ ∂Ω = , y U, in which ϕi Lψi has the principal part

for y ∈∂Ω there is a neighborhood U i∩ ∂Ω ≠ , y U i,

in which ϕi Lψi has the principal part

and ϕi B jψi has the principal part

Then the trivial solution of the Cauchy problem

is the only its bounded solution

Theorem 3 Let the operator (x, D, q, d) be elliptic.

Then for all sufficiently large µ = Req and for any ( f, g) P l + 1, p (d, µ, δ, Ω× (0, +∞), ∂Ω × (0, +∞)), prob-lem (3), (4) has a unique solution u P l, p (d, µ, δ,

Ω× (0, +∞))

6 Consider the problem

(5)

(6)

(7)

where f, q j satisfy the following conditions:

(i) the maps (x, t, u)  f (x, t, u) and (x, t, u j)  gj (x,

t, u j) satisfy the Caratheodory conditions, i.e they are

L i

0

x, , ,ζ q d

( ) ϕ( )x a iα(x,ξ)qβ

α +dβ =2m

=

for xU i, ξ + q ≠0;

L i0(x, ,ξ q)

= ϕi( )x a iα(x,ξ')x n lαξαqβ≠0

α +dβ =2m

γ α ,

〈 〉+dβ–lα=2m

for xU i\∂Ω, ξ + q ≠0,

B ij0(x', , ,ξ q d) b jkl(x',ξ')ξn

k

q l

k+∑dl=m j

=

L i0(0 x, , ,n ξ' D n, ,q d)v( )x n = 0,

B ij

0

0, ,ξ' Dn, ,q d

( )v( )0 = 0,

j = 1 2, , ,… m, for ξ' + q ≠0

t

- d

, , ,

= f x t u x t( , ) … D x

2m 1

u u t( , )

t

- d

, , ,

∂Ω

= g j x' t u x t( , ) … D m x j 1

u x t( , )

j = 1 2, , ,… m;

k

u x t( , )

t k

-t= 0

d

- , , , ,

Trang 5

continuous in u = (u1, u2, …, u N), uj = (u1, u2, …, )

for almost all x, and measurable in x, t for all u, u j,

(ii) the maps u(x, t)  ( f (x, t, u(x, t)), g j (x, t,

uj (x, t))), where

from P l, p (d, µ, δ, Ω × (0, +∞)) to P l, p (d, µ, δ, Ω × (0, +∞), ∂Ω × (0, +∞)) are compact;

(iii) there exists a r > 0, such that

,

where

Theorem 4 If (x, D, q, d) is elliptic, f, g j satisfy

conditions (i)–(iii), then for all sufficiently large µ =

Req, problem (5)–(7) has a solution u (P l, p (d, µ, δ,

Ω × (0, +∞)).

Proof For any w P l, p (d, µ, δ, Ω × (0, +∞)) the

problem

where µ = Req , has a unique solution u P l, p (d, µ, δ,

Ω × (0, +∞)), such that

By condition (iii) there are r > 0 and µ0 > 0, such that

for w P l, p (d, µ, δ, Ω × (0, +∞)) with

= r, ∀µ≥µ0, we have –1 x, D, , d × ||( f, g j)||λ, µ≤ 1 Thus ≤ r.

By (ii) the map w  u is compact from the closed

sphere

to the ball

Therefore, by the Rothe theorem, this map posses a

fixed point in the ball B r of the space P l, p (d, µ, δ, Ω ×

(0, +∞)), which is a solution to the problem (5)–(7)

REFERENCES

1 M S Agranovich and M I Vishik, Usp Mat Nauk 19

(3), 53–161 (1964)

2 E Rothe, Compositio Math 5, 177–197 (1937).

3 Yu V Egorov, Nguyen Minh Chuong, and Dang Anh

Tuan, C R Acad Sci Paris, Ser 1 337, 451–456 (2003).

4 Yu V Egorov, Nguyen Minh Chuong, and Dang Anh

Tuan, Dokl Math 74, 874–877 [Dokl Akad Nauk 411,

732–735 (2006)]

u N

j

u x t( , ) = (u x t( , ) …, ,D x 2m 1u x t( , );

uj(x t, ) u x t( , ) … D x m j 1

u x t( , ) , ,

=

t

- d

, , ,

µ → + ∞

sup

f g, j

( ) λ µ,

= sup 1

r

- (f x t u x t( , , ( , )),g j(x t u, , j(x t, ))) P l p, (d, , , µ δ Ω × ( 0 + , ∞ ) , ∂Ω × 0 + , ∞ ) ) u P

l p, (d, , , µ δ Ω × ( 0 + , ∞ ) ) = r

t

- d

, , ,

⎛ ⎞u x t( , ) = f x t w x t( , , ( , )),

x∈Ω, t>0,

t

- d

, , ,

∂Ω = g j(x t w x t, , ( , )),

x∈∂Ω, t>0,

j = 1 2, , ,… m,

u P

l p, (d, , , µ δ Ω × ( 0 + , ∞ ) )  1

t

- d

, , ,

× (f x t w x t( , , ( , )),g j(x t w, , j(x t, ))) P l p, (d, , , µ δ Ω × ( 0 + , ∞ ) , ∂Ω × ( 0 + , ∞ ) )

l p, (d, , , µ δ Ω × ( 0 + , ∞ ) ) - ⎝⎛

-∂

t

- - u P l p, (d, , , µ δ Ω × ( 0 + , ∞ ) )

S r = {wP l p, (d, , ,µ δ Ω×(0 +, ∞))

w P l p, (d, , , µ δ Ω × ( 0 + , ∞ ) ) = r}

B r = {wP l p, (d, , ,µ δ Ω×(0 +, ∞))

l p, (d, , , µ δ Ω × 0 + , ∞ ) )≤r}

Ngày đăng: 12/12/2017, 06:40

🧩 Sản phẩm bạn có thể quan tâm