Siipposc tiiHt Coiiditioli 2 is satisfied... Equations in linear spaces.
Trang 1L I N E A R E Q U A T I O N S W I T H P O L Y I N V O L U T I O N S
T i a u T h i T ao
FHcuity o f MHthciiiHtics Hanoi ưnivcTsity o f Scỉviìce- V N Ư
A b s t r a c t I.et X he (I l i n e a r s pace o v e r c D e n o t e hy L q ( X ) t h e sef o f (ill !nie(ir
o p e r a t o r s A G L ( X —* Y) Wifh d o m A = X m i d by X s u b a ỉ g eh r a o f L ( ) ( A )
L e t S i , 5, „ be i n v o l u i i o n s o f o r d e r s 7Í 1 , , r e s p e c t i v e l y , s a t i s f y i n g S , S j ~
S j S i for any } j = 1 , 2 ??/ ('onsider the equaiwn
k - 1 ,IM
I n t his p a p e r we p r e s e n t a m e t h o d to r ed u c e t h e e q u a t i o n ( 0 ) to t h e s y s t e m o f
e q u a t i o n s w i t h o u t a n y i n v o l u H o n T h e n w e are able to g i v e all soỉutiOTìs o f EquatìOìì (0) in a close.d f o r w
1 S o m e fu n d a m e n ta l p r o p e r tie s o f p o l y i n v o l u t i o n o p e r a to r s
a An o p erato r s G L q { X) is said to bo an involution of onloi Ì) if S'” “ / ami S’^
I = 1, / ; - 1.
Suppose t h a t s is an involution of o rd er 1Ìth e n
27T/
k = \
are callocl projections aysoc’iat(‘cl with s.
T h e projections P i , , p,, satisfy th e following proportios:
1 P j P j = w h e r e is t h e K r o n o c k o r s y m b o l
2 ± r , = / ,
.7=1
3 SPr
Hence, it implies th a t
S = Y , ^ ' P r 5 "
X = 0 X j , w h e i o A', = P j X (j = Ty>).
7=1
42
Trang 2b Lot Si , , Syji b e c o m m u ta tiv e involution op erators of orders 77.1, , respect i vel y
an d Pkj^Uk = 1,7/Ả:) be p ro je ctio n s asso ciated w ith Sk{ k = l , m ) We denote
— Plji } •'-I Pmj„^ 1 1 ^ s '^'ki
A = { ( j z ,- ,J r n ) |P o ) 7 ^ 0 } ,
27T7
P r o p o s i t i o n VVe h ave the following relations
a) ^ p „ , = Ị
U ) e A
^>) P{ i ) P{ 3 ) — ị -f c \ _ / \ '
0 ) e A
{{i) = U ) i k = jk V Ả := l,m )
Tlfc
Proof: a) From ^ = / VẲ: = 1, m a n d the com m u tativ ity of Pf^j^ we get
m ntf.
fc = 1 rn
b) It n a t u r a l l y h o l d s b y th e c o m m u t a t i v i t y a n d th.e a s s o c i a t i v i t y o f p r o j e c t i o n s
c) It is im plied from a) an d b) □
2 T h e equation (1) can be re w ritte n in th e from
(•)€/
where Ặ) =
We consider th e e q u a tio n (1) u n d er th e assumptions; V P(j), P(^), where (j), (Ả:)
= ^{r)U)ik)P{k) (o r P ( j ) ^ ( ,) = A ^ ) U ) w P i k ) )
'f^0)^(«)0)(fc)'f’(í) = 0 V(/) (k)
Acting on b o t h sides of e q u a tio n (1) by P(j), we ob tain th e system
Trang 3Pu) E = P(j)y v ơ ) G A {^)e^
(t)er(Ẳ:)€A
(i)er{fc)€A
=>
(r)€r(fc)6A
w h e r e
3-(fc) = P(k)X € X(fc).
L en im a 1 ỉ f the condition (2) is satisfied, then the eqìiãtỉon (1) has a solution T e X i f
and only i f s ys t em (3) has a soiỉiủioíi (^(A:))(A:)eA ^ Ỵ ^ioreover, i f T is a solution
(k)eA
o f (1) then (P{k)'^ĩ'){k)eA ^ soiiitioii o f (3) Hiid conversely, i f (j'(k)}(k)€A ^ ^(A) is a
(*)€A
solution o f (3) then X = ^ j:(A:) is a sohition o f (1).
{k)eA Proof: It is obvious t h a t if th e equation (1) has a solution X th en from (3), {P{k)-^){k)eA
is a solution of (3)
C o n v e r s e l y , s u p p o s e th a t t h e s y s t e m ( 3) h a s a s o l u t i o n (j^(A:))(ye)6A ^ W e
(t)6A
prove th at X = ^ is a solution of the equation (1).
{ k ) e A
Iiidet'd, since •'(it) t ^ { k ) ) t A (Iiicl ^ ( k ) ~
(fc)€A
= -Tịk)- Fur the rrnoiP, i ^( k ) ) { k ) e ^ ^ s o l u t i o n o f ( 3) , which implies th at
{ t ) e r { k ) e A
Thus,
(fc)GA
is a solution of (1) L em m a 1 is proved □
Trang 4L e m m a 2 Sup pose thnt the condi t i on (2) is satisfied I f the s ys tem (3) has solutions
soliJtion o f (3) in the space
(k)eA
Pr oof : L(*t (-T{k)){k-)eA ^ ^ solution of system (3), i e., v ( j ) 6 A
^(00)(A-)''**'^^’^-'>"(A-) = P u y y
(Oer (Ẳ-)€A
( 0 e r ( ) 6 A (0.A^
(t)er(A-)eA
Y1 12 Y1
( kAc= ,\ ( t ) € A
j i V
(Ắ'}
( O e r ( A ) e A
From C ondition (2), it follows th a t the left side of the last equality belongs to ker Pịj)
ij)
{ 0 } w e get
(0er(A-)6A
( 0 €r (Ẳ ) €A
i.(\ (^^(A-Ị-í^íAOÌíẢìeA ^ solution of systoni (3) □
Com bining two rosults ju st obtained yields ih(* following
T h e o r e m Siipposc tiiHt Coiiditioli (2) is satisfied T h e eqiiatioii (1) ÌÌH.S sohitioiis if and only i f the svstciii (3) Ììrìs soììitioĩi Moreover, if 1 ' is H sobition o f (Ĩ) tiicn {P{k-)-^')(k ) e \
a solution o f (3) and coiiverscly, //" ^ soìĩìtion o f (3) then 1' = ^
{k-)eA
ri sollỉĩioỉi o f ( 1 ).
R e m a r k I f *4(,) ((;) 6 r) are com m utative w ith th e operators Sk- (A' — 1, 777) then the
system (3) becomes the iiKlepondont system
(Oer
3 E x a m p l e s
E x a m p l e 1 Consider th e Volterra - C arlem an integral equation of the form
Trang 5ự:>(.r,y,t) ~ y y / A',,(.7:./y ^ r ) ^ [ f i , ( r ) , / i , ( y ) , r ]r /r = ! / ( r Ị j , t ) (4)
1) g{ r Ị/ , t ) K, i ( v , Ị j , t , T ) aif' c o n t i n u o u s f u n c t i o n s V/ = 1, n , J = l , ? n
2) a ( r ) , f3{y) ai(' C a r l p m a n t i a n s f o n n a t i o i i s o f o r d o i V a n d ni l e s p p c t i v r l y o n R, i.e.,
a(A + i)(.r) = a[QA.(.T)],QA-{.r) / ,T if 1 < Ả-< n, Q„(:r) = ,r.
â ( k + i ) { y ) = d{ í h- { y) ] f l k- { y) / ỉ/ if 1 < A' < i n, 0 „ , { y ) = y.
3) y , t , T ) a r e i n v a r i a n t u n d e r t h o t r a n s f o r m a t i o n s a { r ) , f3{y).
W e define the o p e r a to r s V , W , A j j E Loi-r) as follows:
{ V i p ) { r , y J ) = ự > a { r ) , y , t
( U » ( r , i / ,0 = ự > \ x j 3 { y ) j ] ,
A , , ^ ) { x , y , f ) = / K ^ j { x , y J , T ) i p { x , y , T ) d T
./0
Then the equation (4) can be rew ritten in th e foini
n 771
We note t h a t v , w are co m m u ta tiv e involution o p e r a to rs of o rd er Vand 7Ì1resp ec
tively and the o p erato rs A,J also co m m u te w ith V, \V {i — 1, n , j — 1, m ).
Denote by — l , n ) and Qị^{ỊJ- — 1, 77?) th e p ro je c tio n s asso ciated with th e V, w
respectively
From the above o b tain ed results, in o rd er to s tu d y of E q u a tio n (4), we can s tu d y the system of the in d ep en den t equations
- / M ^ f , { T , y , f , T ) i p ^ , , { T , y , T ) d T = g ^ f , { x , y , t ) V ; / = 1, n , / i = 1 , 7 » ,
If)
1 = 1 7=1
f i = e x p -, f 2 = e x p
E x a m p l e 2; Consider th e Fredholm - Carleinari in tegral e q u a tio n of form
ip{x
t = l j = l ‘' - i
K ^ j { x , t , T ) t f [ a ^ { T ) , P j { T ) ] d r = g { x j ) , (5
where
1) g { x , y , t ) an d K i j { x , t , r ) are c o n tinu o u s fu n ctio n s X e R ; t , r e [ - 1 , 1
2) q(t) is C arlem an tra n sfo rm atio n of o rd er n
3 ) / ? ( V - - ^ 0 2 Ì t ) = m t ) ) = t^
We define th e o p erato rs V, w , Ai j as follows:
Trang 6{Vip){x,t) =
{ Wự > ) { x , f ) = - t ) ,
{A, j i p ) { x , i ) = Ị K , j { x , f , T ) ^ { x , r ) d T , V?: = T7n; j = 1, 2.
T h e n the e q u a tio n (5) can be re w ritte n in the form:
We get
V/" = / , ^ y ị y ^
D enote by p ^ ( u = 1, 7?) th e p ro jectio n s associated w ith V and
Qi = ị n - W ) , Q^ = ụ i + W),
2 n i
e = e x p —
n
We prove th a t the co n d itio n (2) is satisfied Indeed, p u ttin g
] ^ ^
” k = l 1=1
t h e n
f P l ' Q s-^7 j p u Q r — ^ijiysf^rf^^Qr‘>
\ Pi/Qs ^ijusfir PoQi) — 0 i f ^ o r r; / r
v 4 ,;(/ = ^ 1, 2) and V P ^,P ^(/v,/i 1,7?,) Q s Q r { s r = 1,2).
T h ( ' 1 ont IB t o n l i o w t h a t a i v t l i r i i i t c g i u l o p c i a t o i y w \ - h a v e
” k = \ 1=1
P u t t i n g
Ơ = /32_ ; ( r ) r = Pi{ơ),fÍT =
the light side of the last equality can also be w ritten as
2n
P u ttin g
OI r n e lasT e q u a l i t y c a n a ls o be w r i t t e n as
/ K , A a , { x ) , m , P i { c T M x , a ) d a
' A-=l /- 1
Trang 7We get
Thus, instead of stu d y in g the equation (5) we can s tu d y th e following onv id of stu d y in g the equation (5) we can s tu d y th e following onv
- Ẻ Ề Ê Ẻ i i 1 1
(-2 = 1 J = 1 ^ = 1 r = l A-=l i = l
X K i j { a k { x ) , l3 i ( f ) , P i { T ) ] i p ^ , r { : r , T ) d T
- P ^ Q s g i ^ J ) V i / = l , n ; s = 1, 2
X
( 6 )
E q u a tio n (5) has solutions if and only if th e system (6 ) has solutions Moreover, if
s = \ 2 solutions of (6 ), th en
l/=l S=1
is a solution of (5)
R E F E R E N C E
1] Nguven Van Mail Generalized algebraic elernents and Linear singular infecral equa tions with t r a n s f o r m e d arguments W arsaw 1989.
2] D P Rolewicz Equations in linear spaces A m sterd am - W arsaw 1968.
3] D P Rolewicz Algebraic Analysis A m sterd am - W arsaw 1987.
T A P C H Í K H O A H O C D H Q G H N , K H T N , t.xv, n ^l - 1999
P H Ư Ơ N G T R ÌN H T U Y Ế N T ÍN H V Ớ I CÁ C T O Á N T Ử ĐA P H Ố l H Ợ P
Trần T h ị T ạ o
K hoa Toán - Cơ - Tin bọc Dại học Khoã học Tựnb ièn - Đ H Q G HàNội
X l à m ộ t khòrig g i a n t u y ế n t í n h t r ê n t r ư ờ n g c L o { X ) là t ậ p t ấ t cả r ác t o á n t ư
tu v ến tính A trẻ n X với dom i4 = X X Ik đại số con củ a L q { X) G iả sử 5 i , , Sn, là
các to án t ử đối hợ p c ấ p r ?i , tư ơ n g ứng đòi m ột giao hoán với nhau
Xét ph ư ơng trìn h
trong đó
t ^ — 1, »1
fc=(l ,m)
e X { i k = l , T i k , k = l , m ) và x, y € X
Nội dun g của bài báo này là đ ư a ph ư ơng trìn h (*) về hệ p h ư a n g trình không còn
to án t ử đối h ạ p m à tín h giải đ ư ợ c củ a nó khả th i h ơ n nhiều, đồng th ờ i cho mối liên hệ giữa cấu trú c nghiệm của p h ư a n g trìn h (*) vái cấu trú c nghiệm củ a hệ đó