1. Trang chủ
  2. » Kinh Doanh - Tiếp Thị

Calculus early transcendentals 2nd edition briggs test bank

58 182 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 58
Dung lượng 830,53 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Choose the one alternative that best completes the statement or answers the question... A The limit of fx as x→a from the left exists, the limit of fx as x→a from the right exists, andth

Trang 1

MULTIPLE CHOICE Choose the one alternative that best completes the statement or answers the question Find the average velocity of the function over the given interval.

1) y = x2 + 8x, [5, 8]

638

Trang 2

Use the table to find the instantaneous velocity of y at the specified value of x.

0.48

1.08

1.92

34.32

5.88

11)

Trang 3

t 1.9 1.99 1.999 2.001 2.01 2.1s(t) 5.043 5.364 5.396 5.404 5.436 5.763 ; instantaneous velocity is 5.40C)

t 1.9 1.99 1.999 2.001 2.01 2.1s(t) 5.043 5.364 5.396 5.404 5.436 5.763 ; instantaneous velocity is ∞D)

s(t) 16.810 17.880 17.988 18.012 18.120 19.210 ; instantaneous velocity is 18.0

14)

Trang 4

t -0.1 -0.01 -0.001 0.001 0.01 0.1s(t) -2.9910 -2.9999 -3.0000 -3.0000 -2.9999 -2.9910 ; instantaneous velocity is -3.0C)

t -0.1 -0.01 -0.001 0.001 0.01 0.1s(t) -1.4970 -1.4999 -1.5000 -1.5000 -1.4999 -1.4970 ; instantaneous velocity is -15.0D)

t -0.1 -0.01 -0.001 0.001 0.01 0.1s(t) -1.4970 -1.4999 -1.5000 -1.5000 -1.4999 -1.4970 ; instantaneous velocity is ∞

x→0f(x) does not exist.

21)

Trang 5

24) What conditions, when present, are sufficient to conclude that a function f(x) has a limit as x

approaches some value of a?

A) The limit of f(x) as x→a from the left exists, the limit of f(x) as x→a from the right exists, andthese two limits are the same

B) Either the limit of f(x) as x→a from the left exists or the limit of f(x) as x→a from the right

exists

C) The limit of f(x) as x→a from the left exists, the limit of f(x) as x→a from the right exists, and

at least one of these limits is the same as f(a)

D) f(a) exists, the limit of f(x) as x→a from the left exists, and the limit of f(x) as x→a from the

right exists

24)

Trang 6

Use the graph to evaluate the limit.

25) lim

x→-1f(x)

x -6 -5 -4 -3 -2 -1 1 2 3 4 5 6

y

1

-1

x -6 -5 -4 -3 -2 -1 1 2 3 4 5 6

-1 -2 -3 -4

x

y 4 3 2 1

-1 -2 -3 -4

26)

Trang 7

27) lim

x→0f(x)

x -6 -5 -4 -3 -2 -1 1 2 3 4 5 6

y 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6

x -6 -5 -4 -3 -2 -1 1 2 3 4 5 6

y 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6

10

8 6 4 2

10

8 6 4 2

-2

-4

28)

Trang 8

-1 -2 -3 -4

x

y 4 3 2 1

-1 -2 -3 -4

-1 -2 -3 -4

x

y 4 3 2 1

-1 -2 -3 -4

30)

Trang 9

-1 -2 -3 -4

x

y 4 3 2 1

-1 -2 -3 -4

-1 -2 -3 -4

x

y 4 3 2 1

-1 -2 -3 -4

32)

Trang 10

-1 -2 -3 -4

x

y 4 3 2 1

-1 -2 -3 -4

Trang 11

Use the table of values of f to estimate the limit.

35) Let f(x) = x2 + 8x - 2, find lim

x 1.9 1.99 1.999 2.001 2.01 2.1f(x) 5.043 5.364 5.396 5.404 5.436 5.763 ; limit = 5.40C)

f(x) 16.692 17.592 17.689 17.710 17.808 18.789 ; limit = 17.70D)

f(x) 1.19245 1.19925 1.19993 1.20007 1.20075 1.20745 ; limit = 1.20C)

f(x) 3.97484 3.99750 3.99975 4.00025 4.00250 4.02485 ; limit = 4.0D)

f(x) 5.07736 5.09775 5.09978 5.10022 5.10225 5.12236 ; limit = 5.10

36)

Trang 12

37) Let f(x) = x2 - 5, find lim

Trang 13

f(x) 0.7802 0.7780 0.7778 0.7778 0.7775 0.7753 ; limit = 0.7778C)

f(x) 3.2222 3.0202 3.0020 2.9980 2.9802 2.8182 ; limit = 3D)

2 - 2 cos(x) < 1 hold for all values of x close

to zero What, if anything, does this tell you about x sin(x)

2 - 2 cos(x) ? Explain.

42)

Trang 14

MULTIPLE CHOICE Choose the one alternative that best completes the statement or answers the question.

43) Write the formal notation for the principle "the limit of a quotient is the quotient of the limits" andinclude a statement of any restrictions on the principle

A) If lim

x→a g(x) = M and limx→a f(x) = L, then limx→a

g(x)f(x) =

limx→a g(x)limx→a f(x)

C) lim

x→a

g(x)f(x) = g(a)f(a), provided that f(a) ≠ 0.

D) If lim

x→a g(x) = M and limx→a f(x) = L, then limx→a

g(x)f(x) =

limx→a g(x)limx→a f(x)

B) The sum or the difference of two functions is the sum of two limits

C) The limit of a sum or a difference is the sum or the difference of the functions

D) The sum or the difference of two functions is continuous

44)

45) The statement "the limit of a constant times a function is the constant times the limit" follows from

a combination of two fundamental limit principles What are they?

A) The limit of a function is a constant times a limit, and the limit of a constant is the constant

B) The limit of a product is the product of the limits, and a constant is continuous

C) The limit of a product is the product of the limits, and the limit of a quotient is the quotient ofthe limits

D) The limit of a constant is the constant, and the limit of a product is the product of the limits

Trang 15

Give an appropriate answer.

5

58)

Trang 16

65) lim

x→0

1 + x - 1x

Trang 17

78) lim

x→-1

x2 - 6x - 7x2 - 2x - 3

78)

Trang 18

79) lim

h → 0

(x + h)3 - x3h

Provide an appropriate response.

81) It can be shown that the inequalities -x ≤ x cos 1

x ≤ x hold for all values of x ≥ 0

x 1.9 1.99 1.999 2.001 2.01 2.1f(x) 5.043 5.364 5.396 5.404 5.436 5.763 ; limit = ∞C)

f(x) 16.692 17.592 17.689 17.710 17.808 18.789 ; limit = 17.70D)

f(x) 16.810 17.880 17.988 18.012 18.120 19.210 ; limit = 18.0

84)

Trang 22

For the function f whose graph is given, determine the limit.

91) Find lim

x→4-f(x) and limx→4+f(x).

x -2 -1 1 2 3 4 5 6 7 8 9 10 11

y 8 6 4 2

-2 -4 -6 -8

x -2 -1 1 2 3 4 5 6 7 8 9 10 11

y 8 6 4 2

-2 -4 -6 -8

y 5 4 3 2 1

-1 -2 -3 -4 -5

x -5 -4 -3 -2 -1 1 2 3 4 5

y 5 4 3 2 1

-1 -2 -3 -4 -5

92)

Trang 23

93) Find lim

x→3f(x).

x -5 -4 -3 -2 -1 1 2 3 4 5

y 5 4 3 2 1

-1 -2 -3 -4 -5

x -5 -4 -3 -2 -1 1 2 3 4 5

y 5 4 3 2 1

-1 -2 -3 -4 -5

93)

94) Find lim

x→-4f(x).

x -6 -5 -4 -3 -2 -1 1 2 3 4 5 6

y 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6

x -6 -5 -4 -3 -2 -1 1 2 3 4 5 6

y 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6

Trang 24

Find the limit.

105)

Trang 25

Find all vertical asymptotes of the given function.

Trang 26

x -10 -8 -6 -4 -2 2 4 6 8 10

y 4

2

-2

-4

x -10 -8 -6 -4 -2 2 4 6 8 10

y 4

y 4

2

-2

-4

x -10 -8 -6 -4 -2 2 4 6 8 10

y 4

y 4

2

-2

-4

x -10 -8 -6 -4 -2 2 4 6 8 10

y 4

y 4

2

-2

-4

x -10 -8 -6 -4 -2 2 4 6 8 10

y 4

2

-2

-4

117)

Trang 27

118) f(x) = x

x2 + x + 4

A)

x -10 -8 -6 -4 -2 2 4 6 8 10

y 4

2

-2

-4

x -10 -8 -6 -4 -2 2 4 6 8 10

y 4

y 4

2

-2

-4

x -10 -8 -6 -4 -2 2 4 6 8 10

y 4

y 4

2

-2

-4

x -10 -8 -6 -4 -2 2 4 6 8 10

y 4

y 4

2

-2

-4

x -10 -8 -6 -4 -2 2 4 6 8 10

y 4

2

-2

-4

118)

Trang 28

119) f(x) = x2 - 3

x3

A)

x -10 -8 -6 -4 -2 2 4 6 8 10

y 4

2

-2

-4

x -10 -8 -6 -4 -2 2 4 6 8 10

y 4

y 4

2

-2

-4

x -10 -8 -6 -4 -2 2 4 6 8 10

y 4

y 4

2

-2

-4

x -10 -8 -6 -4 -2 2 4 6 8 10

y 4

y 4

2

-2

-4

x -10 -8 -6 -4 -2 2 4 6 8 10

y 4

2

-2

-4

119)

Trang 29

120) f(x) = 1

x + 1

A)

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

B)

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

C)

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

D)

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

120)

Trang 30

121) f(x) = x - 1

x + 1

A)

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

B)

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

C)

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

D)

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

121)

Trang 31

122) f(x) = 1

(x + 2)2

A)

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

B)

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

C)

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

D)

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

122)

Trang 32

123) f(x) = 2x2

4 - x2A)

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

B)

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

C)

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

D)

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

Trang 33

127) lim

x→∞

x2 + 7x + 3x3 + 6x2 + 4

1-4

135)

Trang 34

136) lim

x→∞

-3x-1 - 2x-3-2x-2 + x-5

107

Trang 36

x y

153)

Trang 37

154) f(0) = 5, f(1) = -5, f(-1) = -5, lim

x→±∞f(x) = 0.

x y

Trang 38

159) Find the horizontal asymptote, if any, of the given function.

f(x) = 2x3 - 3x - 9

9x3 - 5x + 3A) y = 3

Trang 40

Provide an appropriate response.

169) Is f continuous at f(1)?

f(x) =

-x2 + 1,4x,-5,-4x + 81,

d 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6 (1, -5)

t -6 -5 -4 -3 -2 -1 1 2 3 4 5 6

d 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6 (1, -5)

d 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6

(1, -2)

t -6 -5 -4 -3 -2 -1 1 2 3 4 5 6

d 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6 (1, -2)

d 10 8 6 4 2

-2 -4 -6 -8 -10

(2, 0)

t -5 -4 -3 -2 -1 1 2 3 4 5

d 10 8 6 4 2

-2 -4 -6 -8 -10 (2, 0)

171)

Trang 41

172) Is f continuous at x = 4?

f(x) =

x3,-2x,3,0,

d 10 8 6 4 2

-2 -4 -6 -8 -10

(2, 0)

t -5 -4 -3 -2 -1 1 2 3 4 5

d 10 8 6 4 2

-2 -4 -6 -8 -10 (2, 0)

172)

173) Is the function given by f(x) = x + 2

x2 - 3x + 2 continuous at x = 1? Why or why not?

A) Yes, lim

x→ 1f(x) = f(1)B) No, f(1) does not exist and lim

x→ 1 f(x) does not exist

175) Is the function given by f(x) = x2 - 3, for x < 0

-4, for x ≥ 0 continuous at x = -3? Why or why not?

continuous at x = 2? Why or why not?

C) discontinuous only when x = -7 D) discontinuous only when x = 7

177)

(x + 5)2 + 10

A) discontinuous only when x = 35 B) discontinuous only when x = -5

178)

Trang 42

179) y = x + 3

x2 - 5x + 4

A) discontinuous only when x = -4 or x = 1 B) discontinuous only when x = 1

C) discontinuous only when x = -1 or x = 4 D) discontinuous only when x = 1 or x = 4

179)

180) y = 1

x2 - 9

A) discontinuous only when x = -3 B) discontinuous only when x = -9 or x = 9

C) discontinuous only when x = 9 D) discontinuous only when x = -3 or x = 3

180)

181) y = 1

x + 4 - x2

5A) discontinuous only when x = -4 B) discontinuous only when x = -9

181)

182) y = sin (4θ)

C) discontinuous only when θ = π

A) continuous on the interval - 67, ∞ B) continuous on the interval -∞, - 67

C) continuous on the interval 6

7, ∞ D) continuous on the interval -

C) continuous on the interval -∞, 2

2

3, ∞

185)

Trang 43

186) y = x2 - 7

A) continuous on the interval [ 7, ∞)

B) continuous on the interval [- 7, 7]

C) continuous on the intervals (-∞, - 7] and [ 7, ∞)

187)

188) lim

x→∞

5x - 1x3

d 10 8 6 4 2

-2 -4 -6 -8 -10

(2, 0)

t -5 -4 -3 -2 -1 1 2 3 4 5

d 10 8 6 4 2

-2 -4 -6 -8 -10 (2, 0)

Trang 44

x > -3

201)

Trang 45

Solve the problem.

206) Select the correct statement for the definition of the limit: lim

x→x0f(x) = Lmeans that

A) if given a number ε > 0, there exists a number δ > 0, such that for all x,

207) Identify the incorrect statements about limits

I The number L is the limit of f(x) as x approaches x0 if f(x) gets closer to L as x approaches x0

II The number L is the limit of f(x) as x approaches x0 if, for any ε > 0, there corresponds a δ > 0

such that f(x) - L < ε whenever 0 < x - x0 < δ

III The number L is the limit of f(x) as x approaches x0 if, given any ε > 0, there exists a value of x

for which f(x) - L < ε

207)

Trang 46

Use the graph to find a δ > 0 such that for all x, 0 < x - x0 < δ ⇒ f(x) - L < ε.

208)

x y

y

0

y = x + 34.2

y

0

y = 4x - 35.2

5

4.8

 2 1.95 2.05

NOT TO SCALE

f(x) = 4x - 3x0 = 2

L = 5

ε = 0.2

209)

Trang 48

x y

Trang 49

x y

L = 2

ε = 14

214)

215)

x y

L = 2

ε = 14

215)

Trang 50

x y

y

0

y = 2x23

y

0

y = x2 - 14

Trang 55

-2 -4 -6 -8

x

y 8 6 4 2

-2 -4 -6 -8

153) Answers may vary One possible answer:

x

y 8 6 4 2

-2 -4 -6 -8

x

y 8 6 4 2

-2 -4 -6 -8

Trang 56

Answer Key

Testname: UNTITLED2

154) Answers may vary One possible answer:

x -12 -10 -8 -6 -4 -2 2 4 6 8 10 12

y 12 10 8 6 4 2 -2 -4 -6 -8 -10 -12

x -12 -10 -8 -6 -4 -2 2 4 6 8 10 12

y 12 10 8 6 4 2 -2 -4 -6 -8 -10 -12

155) Answers may vary One possible answer:

x

y 2

-2

x

y 2

Trang 57

198) Let f(x) = 8x4 + 4x3 - 7x - 5 and let y0 = 0 f(-1) = 6 and f(0) = -5 Since f is continuous on [-1, 0] and since y0 = 0 isbetween f(-1) and f(0), by the Intermediate Value Theorem, there exists a c in the interval (-1, 0) with the propertythat f(c) = 0 Such a c is a solution to the equation 8x4 + 4x3 - 7x - 5 = 0.

199) Let f(x) = x(x - 6)2 and let y0 = 6 f(5) = 5 and f(7) = 7 Since f is continuous on [5, 7] and since y0 = 6 is between f(5)and f(7), by the Intermediate Value Theorem, there exists a c in the interval (5, 7) with the property that f(c) = 6 Such a

c is a solution to the equation x(x - 6)2 = 6

200) Let f(x) = sin x

x and let y0 = 16 f π

2 ≈ 0.6366 and f(π) = 0 Since f is continuous on π

2, π and since y0 = 16 is between fπ

2 and f(π), by the Intermediate Value Theorem, there exists a c in the interval

π

2, π , with the property that f(c) =

1

6.Such a c is a solution to the equation 6 sin x = x

Trang 58

224) Let ε > 0 be given Choose δ = ε Then 0 < x - 7 < δ implies that

x - 7 - 14 < ε225) Let ε > 0 be given Choose δ = ε/2 Then 0 < x - 9 < δ implies that

x - 9 - 21 < ε226) Let ε > 0 be given Choose δ = min{7/2, 49ε/2} Then 0 < x - 7 < δ implies that

1

7 ∙

49ε

2 = εThus, 0 < x - 7 < δ implies that 1

x - 1

7 < ε

Ngày đăng: 19/10/2017, 15:55

TỪ KHÓA LIÊN QUAN