Choose the one alternative that best completes the statement or answers the question... A The limit of fx as x→a from the left exists, the limit of fx as x→a from the right exists, andth
Trang 1MULTIPLE CHOICE Choose the one alternative that best completes the statement or answers the question Find the average velocity of the function over the given interval.
1) y = x2 + 8x, [5, 8]
638
Trang 2Use the table to find the instantaneous velocity of y at the specified value of x.
0.48
1.08
1.92
34.32
5.88
11)
Trang 3t 1.9 1.99 1.999 2.001 2.01 2.1s(t) 5.043 5.364 5.396 5.404 5.436 5.763 ; instantaneous velocity is 5.40C)
t 1.9 1.99 1.999 2.001 2.01 2.1s(t) 5.043 5.364 5.396 5.404 5.436 5.763 ; instantaneous velocity is ∞D)
s(t) 16.810 17.880 17.988 18.012 18.120 19.210 ; instantaneous velocity is 18.0
14)
Trang 4t -0.1 -0.01 -0.001 0.001 0.01 0.1s(t) -2.9910 -2.9999 -3.0000 -3.0000 -2.9999 -2.9910 ; instantaneous velocity is -3.0C)
t -0.1 -0.01 -0.001 0.001 0.01 0.1s(t) -1.4970 -1.4999 -1.5000 -1.5000 -1.4999 -1.4970 ; instantaneous velocity is -15.0D)
t -0.1 -0.01 -0.001 0.001 0.01 0.1s(t) -1.4970 -1.4999 -1.5000 -1.5000 -1.4999 -1.4970 ; instantaneous velocity is ∞
x→0f(x) does not exist.
21)
Trang 524) What conditions, when present, are sufficient to conclude that a function f(x) has a limit as x
approaches some value of a?
A) The limit of f(x) as x→a from the left exists, the limit of f(x) as x→a from the right exists, andthese two limits are the same
B) Either the limit of f(x) as x→a from the left exists or the limit of f(x) as x→a from the right
exists
C) The limit of f(x) as x→a from the left exists, the limit of f(x) as x→a from the right exists, and
at least one of these limits is the same as f(a)
D) f(a) exists, the limit of f(x) as x→a from the left exists, and the limit of f(x) as x→a from the
right exists
24)
Trang 6Use the graph to evaluate the limit.
25) lim
x→-1f(x)
x -6 -5 -4 -3 -2 -1 1 2 3 4 5 6
y
1
-1
x -6 -5 -4 -3 -2 -1 1 2 3 4 5 6
-1 -2 -3 -4
x
y 4 3 2 1
-1 -2 -3 -4
26)
Trang 727) lim
x→0f(x)
x -6 -5 -4 -3 -2 -1 1 2 3 4 5 6
y 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6
x -6 -5 -4 -3 -2 -1 1 2 3 4 5 6
y 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6
10
8 6 4 2
10
8 6 4 2
-2
-4
28)
Trang 8-1 -2 -3 -4
x
y 4 3 2 1
-1 -2 -3 -4
-1 -2 -3 -4
x
y 4 3 2 1
-1 -2 -3 -4
30)
Trang 9-1 -2 -3 -4
x
y 4 3 2 1
-1 -2 -3 -4
-1 -2 -3 -4
x
y 4 3 2 1
-1 -2 -3 -4
32)
Trang 10-1 -2 -3 -4
x
y 4 3 2 1
-1 -2 -3 -4
Trang 11Use the table of values of f to estimate the limit.
35) Let f(x) = x2 + 8x - 2, find lim
x 1.9 1.99 1.999 2.001 2.01 2.1f(x) 5.043 5.364 5.396 5.404 5.436 5.763 ; limit = 5.40C)
f(x) 16.692 17.592 17.689 17.710 17.808 18.789 ; limit = 17.70D)
f(x) 1.19245 1.19925 1.19993 1.20007 1.20075 1.20745 ; limit = 1.20C)
f(x) 3.97484 3.99750 3.99975 4.00025 4.00250 4.02485 ; limit = 4.0D)
f(x) 5.07736 5.09775 5.09978 5.10022 5.10225 5.12236 ; limit = 5.10
36)
Trang 1237) Let f(x) = x2 - 5, find lim
Trang 13f(x) 0.7802 0.7780 0.7778 0.7778 0.7775 0.7753 ; limit = 0.7778C)
f(x) 3.2222 3.0202 3.0020 2.9980 2.9802 2.8182 ; limit = 3D)
2 - 2 cos(x) < 1 hold for all values of x close
to zero What, if anything, does this tell you about x sin(x)
2 - 2 cos(x) ? Explain.
42)
Trang 14MULTIPLE CHOICE Choose the one alternative that best completes the statement or answers the question.
43) Write the formal notation for the principle "the limit of a quotient is the quotient of the limits" andinclude a statement of any restrictions on the principle
A) If lim
x→a g(x) = M and limx→a f(x) = L, then limx→a
g(x)f(x) =
limx→a g(x)limx→a f(x)
C) lim
x→a
g(x)f(x) = g(a)f(a), provided that f(a) ≠ 0.
D) If lim
x→a g(x) = M and limx→a f(x) = L, then limx→a
g(x)f(x) =
limx→a g(x)limx→a f(x)
B) The sum or the difference of two functions is the sum of two limits
C) The limit of a sum or a difference is the sum or the difference of the functions
D) The sum or the difference of two functions is continuous
44)
45) The statement "the limit of a constant times a function is the constant times the limit" follows from
a combination of two fundamental limit principles What are they?
A) The limit of a function is a constant times a limit, and the limit of a constant is the constant
B) The limit of a product is the product of the limits, and a constant is continuous
C) The limit of a product is the product of the limits, and the limit of a quotient is the quotient ofthe limits
D) The limit of a constant is the constant, and the limit of a product is the product of the limits
Trang 15Give an appropriate answer.
5
58)
Trang 1665) lim
x→0
1 + x - 1x
Trang 1778) lim
x→-1
x2 - 6x - 7x2 - 2x - 3
78)
Trang 1879) lim
h → 0
(x + h)3 - x3h
Provide an appropriate response.
81) It can be shown that the inequalities -x ≤ x cos 1
x ≤ x hold for all values of x ≥ 0
x 1.9 1.99 1.999 2.001 2.01 2.1f(x) 5.043 5.364 5.396 5.404 5.436 5.763 ; limit = ∞C)
f(x) 16.692 17.592 17.689 17.710 17.808 18.789 ; limit = 17.70D)
f(x) 16.810 17.880 17.988 18.012 18.120 19.210 ; limit = 18.0
84)
Trang 22For the function f whose graph is given, determine the limit.
91) Find lim
x→4-f(x) and limx→4+f(x).
x -2 -1 1 2 3 4 5 6 7 8 9 10 11
y 8 6 4 2
-2 -4 -6 -8
x -2 -1 1 2 3 4 5 6 7 8 9 10 11
y 8 6 4 2
-2 -4 -6 -8
y 5 4 3 2 1
-1 -2 -3 -4 -5
x -5 -4 -3 -2 -1 1 2 3 4 5
y 5 4 3 2 1
-1 -2 -3 -4 -5
92)
Trang 2393) Find lim
x→3f(x).
x -5 -4 -3 -2 -1 1 2 3 4 5
y 5 4 3 2 1
-1 -2 -3 -4 -5
x -5 -4 -3 -2 -1 1 2 3 4 5
y 5 4 3 2 1
-1 -2 -3 -4 -5
93)
94) Find lim
x→-4f(x).
x -6 -5 -4 -3 -2 -1 1 2 3 4 5 6
y 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6
x -6 -5 -4 -3 -2 -1 1 2 3 4 5 6
y 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6
Trang 24Find the limit.
105)
Trang 25Find all vertical asymptotes of the given function.
Trang 26x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
2
-2
-4
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
y 4
2
-2
-4
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
y 4
2
-2
-4
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
y 4
2
-2
-4
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
2
-2
-4
117)
Trang 27118) f(x) = x
x2 + x + 4
A)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
2
-2
-4
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
y 4
2
-2
-4
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
y 4
2
-2
-4
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
y 4
2
-2
-4
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
2
-2
-4
118)
Trang 28119) f(x) = x2 - 3
x3
A)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
2
-2
-4
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
y 4
2
-2
-4
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
y 4
2
-2
-4
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
y 4
2
-2
-4
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
2
-2
-4
119)
Trang 29120) f(x) = 1
x + 1
A)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
B)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
C)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
D)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
120)
Trang 30121) f(x) = x - 1
x + 1
A)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
B)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
C)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
D)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
121)
Trang 31122) f(x) = 1
(x + 2)2
A)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
B)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
C)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
D)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
122)
Trang 32123) f(x) = 2x2
4 - x2A)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
B)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
C)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
D)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
Trang 33127) lim
x→∞
x2 + 7x + 3x3 + 6x2 + 4
1-4
135)
Trang 34136) lim
x→∞
-3x-1 - 2x-3-2x-2 + x-5
107
Trang 36x y
153)
Trang 37154) f(0) = 5, f(1) = -5, f(-1) = -5, lim
x→±∞f(x) = 0.
x y
Trang 38159) Find the horizontal asymptote, if any, of the given function.
f(x) = 2x3 - 3x - 9
9x3 - 5x + 3A) y = 3
Trang 40Provide an appropriate response.
169) Is f continuous at f(1)?
f(x) =
-x2 + 1,4x,-5,-4x + 81,
d 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6 (1, -5)
t -6 -5 -4 -3 -2 -1 1 2 3 4 5 6
d 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6 (1, -5)
d 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6
(1, -2)
t -6 -5 -4 -3 -2 -1 1 2 3 4 5 6
d 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6 (1, -2)
d 10 8 6 4 2
-2 -4 -6 -8 -10
(2, 0)
t -5 -4 -3 -2 -1 1 2 3 4 5
d 10 8 6 4 2
-2 -4 -6 -8 -10 (2, 0)
171)
Trang 41172) Is f continuous at x = 4?
f(x) =
x3,-2x,3,0,
d 10 8 6 4 2
-2 -4 -6 -8 -10
(2, 0)
t -5 -4 -3 -2 -1 1 2 3 4 5
d 10 8 6 4 2
-2 -4 -6 -8 -10 (2, 0)
172)
173) Is the function given by f(x) = x + 2
x2 - 3x + 2 continuous at x = 1? Why or why not?
A) Yes, lim
x→ 1f(x) = f(1)B) No, f(1) does not exist and lim
x→ 1 f(x) does not exist
175) Is the function given by f(x) = x2 - 3, for x < 0
-4, for x ≥ 0 continuous at x = -3? Why or why not?
continuous at x = 2? Why or why not?
C) discontinuous only when x = -7 D) discontinuous only when x = 7
177)
(x + 5)2 + 10
A) discontinuous only when x = 35 B) discontinuous only when x = -5
178)
Trang 42179) y = x + 3
x2 - 5x + 4
A) discontinuous only when x = -4 or x = 1 B) discontinuous only when x = 1
C) discontinuous only when x = -1 or x = 4 D) discontinuous only when x = 1 or x = 4
179)
180) y = 1
x2 - 9
A) discontinuous only when x = -3 B) discontinuous only when x = -9 or x = 9
C) discontinuous only when x = 9 D) discontinuous only when x = -3 or x = 3
180)
181) y = 1
x + 4 - x2
5A) discontinuous only when x = -4 B) discontinuous only when x = -9
181)
182) y = sin (4θ)
2θ
C) discontinuous only when θ = π
A) continuous on the interval - 67, ∞ B) continuous on the interval -∞, - 67
C) continuous on the interval 6
7, ∞ D) continuous on the interval -
C) continuous on the interval -∞, 2
2
3, ∞
185)
Trang 43186) y = x2 - 7
A) continuous on the interval [ 7, ∞)
B) continuous on the interval [- 7, 7]
C) continuous on the intervals (-∞, - 7] and [ 7, ∞)
187)
188) lim
x→∞
5x - 1x3
d 10 8 6 4 2
-2 -4 -6 -8 -10
(2, 0)
t -5 -4 -3 -2 -1 1 2 3 4 5
d 10 8 6 4 2
-2 -4 -6 -8 -10 (2, 0)
Trang 44x > -3
201)
Trang 45Solve the problem.
206) Select the correct statement for the definition of the limit: lim
x→x0f(x) = Lmeans that
A) if given a number ε > 0, there exists a number δ > 0, such that for all x,
207) Identify the incorrect statements about limits
I The number L is the limit of f(x) as x approaches x0 if f(x) gets closer to L as x approaches x0
II The number L is the limit of f(x) as x approaches x0 if, for any ε > 0, there corresponds a δ > 0
such that f(x) - L < ε whenever 0 < x - x0 < δ
III The number L is the limit of f(x) as x approaches x0 if, given any ε > 0, there exists a value of x
for which f(x) - L < ε
207)
Trang 46Use the graph to find a δ > 0 such that for all x, 0 < x - x0 < δ ⇒ f(x) - L < ε.
208)
x y
y
0
y = x + 34.2
y
0
y = 4x - 35.2
5
4.8
2 1.95 2.05
NOT TO SCALE
f(x) = 4x - 3x0 = 2
L = 5
ε = 0.2
209)
Trang 48x y
Trang 49x y
L = 2
ε = 14
214)
215)
x y
L = 2
ε = 14
215)
Trang 50x y
y
0
y = 2x23
y
0
y = x2 - 14
Trang 55-2 -4 -6 -8
x
y 8 6 4 2
-2 -4 -6 -8
153) Answers may vary One possible answer:
x
y 8 6 4 2
-2 -4 -6 -8
x
y 8 6 4 2
-2 -4 -6 -8
Trang 56Answer Key
Testname: UNTITLED2
154) Answers may vary One possible answer:
x -12 -10 -8 -6 -4 -2 2 4 6 8 10 12
y 12 10 8 6 4 2 -2 -4 -6 -8 -10 -12
x -12 -10 -8 -6 -4 -2 2 4 6 8 10 12
y 12 10 8 6 4 2 -2 -4 -6 -8 -10 -12
155) Answers may vary One possible answer:
x
y 2
-2
x
y 2
Trang 57198) Let f(x) = 8x4 + 4x3 - 7x - 5 and let y0 = 0 f(-1) = 6 and f(0) = -5 Since f is continuous on [-1, 0] and since y0 = 0 isbetween f(-1) and f(0), by the Intermediate Value Theorem, there exists a c in the interval (-1, 0) with the propertythat f(c) = 0 Such a c is a solution to the equation 8x4 + 4x3 - 7x - 5 = 0.
199) Let f(x) = x(x - 6)2 and let y0 = 6 f(5) = 5 and f(7) = 7 Since f is continuous on [5, 7] and since y0 = 6 is between f(5)and f(7), by the Intermediate Value Theorem, there exists a c in the interval (5, 7) with the property that f(c) = 6 Such a
c is a solution to the equation x(x - 6)2 = 6
200) Let f(x) = sin x
x and let y0 = 16 f π
2 ≈ 0.6366 and f(π) = 0 Since f is continuous on π
2, π and since y0 = 16 is between fπ
2 and f(π), by the Intermediate Value Theorem, there exists a c in the interval
π
2, π , with the property that f(c) =
1
6.Such a c is a solution to the equation 6 sin x = x
Trang 58224) Let ε > 0 be given Choose δ = ε Then 0 < x - 7 < δ implies that
x - 7 - 14 < ε225) Let ε > 0 be given Choose δ = ε/2 Then 0 < x - 9 < δ implies that
x - 9 - 21 < ε226) Let ε > 0 be given Choose δ = min{7/2, 49ε/2} Then 0 < x - 7 < δ implies that
1
7 ∙
49ε
2 = εThus, 0 < x - 7 < δ implies that 1
x - 1
7 < ε