8.1.4 A finite sum is the sum of a finite number of items, for example the sum of a finite number of terms of a sequence.. 8.1.5 An infinite series is an infinite sum of numbers... absolute
Trang 1k = 1
1
Calculus Early Transcendentals 2nd Edition by William L Briggs
http://testbankair.com/download/solutions-manual-for-calculus-early-transcendentals-2nd-edition-briggs-by-william-l-briggs
http://testbankair.com/download/solutions-manual-for-calculus-early-transcendentals-2nd-edition-by-william-l-briggs
8.1.2 a1 = 1 = 1; a2 = 2 ; a3 = 3 ; a4 = 4 ; a5 = 5
8.1.4 A finite sum is the sum of a finite number of items, for example the sum of a finite number of terms
of a sequence
8.1.5 An infinite series is an infinite sum of numbers Thus if { a n } is a sequence, then a1 + a2 + · · · = P ∞ ak
k =
is an infinite series
1 + 2 + 3 + 4 = 10
1 + 4 + 9 + 16 = 30
1
; a2 = 10
1
1
1
8.1.11 a1 = − 1 , a2 = 1 = 1 a3 = − 2 = − 1 , a4 = 1 = 1
8.1.13 a1 = 2+ 1 = 3 a2 = 22 + 1 = 5 a3 = 23 +1 = 9 a4 = 24 + 1 = 17
8.1.14 a1 = 1 + 1 = 2; a2 = 2 + 1 = 5 ; a3 = 3 + 1 = 10 ; a4 = 4 + 1 = 17
1 + sin 2π = 1.
P
1 + 1 + + 1 = 2
k =1 k
1 2 3 4 12
=
k
Trang 22
126 − 12 = 114.
8.1.23
a 32 , 64
b a1 = 1; a n + 1 = n
8.1.24
a −6 , 7.
(|a n | + 1).
8.1.25
a −5 , 5.
b a1 = −5 , a n + 1 = −a n
c a n = (−1 ) n · 5.
8.1.27
a 32, 64
b a1 = 1; a n + 1 = 2a n
c a n = 2n−1
8.1.29
a 243, 729
b a1 = 1; a n + 1 = 3a n
8.1.26
a 14, 17
b a1 = 2; a n + 1 = a n + 3
8.1.28
a 36, 49
b a1 = 1; a n + 1 = (√
an + 1)2
c a n = n2
8.1.30
a 2, 1
b a1 = 64; a n + 1 = n
n = = 27− n
bound
bound
absolute value than the preceding term and they get arbitraril y close to zero
Copyright 2c015 Pearson Education, Inc
n − 1
Trang 3
Thank you for using www.freepdfconvert.com service!
Only two pages are converted Please Sign Up to convert all pages
https://www.freepdfconvert.com/membership