1. Trang chủ
  2. » Kinh Doanh - Tiếp Thị

Calculus for scientists and engineers 1st edition briggs test bank

59 166 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 59
Dung lượng 836,61 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Choose the one alternative that best completes the statement or answers the question... A Either the limit of fx as x→a from the left exists or the limit of fx as x→a from the right exis

Trang 1

MULTIPLE CHOICE Choose the one alternative that best completes the statement or answers the question Find the average velocity of the function over the given interval.

7)

8) g(t) = 3 + tan t, - π

4,

π4

Trang 2

Use the table to find the instantaneous velocity of y at the specified value of x.

0.48

1.08

1.92

34.32

5.88

11)

Trang 4

Solve the problem.

x→0f(x) does not exist.

x→0f(x) does not exist.

21)

22) What conditions, when present, are sufficient to conclude that a function f(x) has a limit as x

approaches some value of a?

A) Either the limit of f(x) as x→a from the left exists or the limit of f(x) as x→a from the right

existsB) The limit of f(x) as x→a from the left exists, the limit of f(x) as x→a from the right exists, and

at least one of these limits is the same as f(a)

C) f(a) exists, the limit of f(x) as x→a from the left exists, and the limit of f(x) as x→a from the

right exists

D) The limit of f(x) as x→a from the left exists, the limit of f(x) as x→a from the right exists, andthese two limits are the same

22)

Trang 5

Use the graph to evaluate the limit.

23) lim

x→-1f(x)

x -6 -5 -4 -3 -2 -1 1 2 3 4 5 6

y

1

-1

x -6 -5 -4 -3 -2 -1 1 2 3 4 5 6

-1 -2 -3 -4

x

y 4 3 2 1

-1 -2 -3 -4

24)

Trang 6

25) lim

x→0f(x)

x -6 -5 -4 -3 -2 -1 1 2 3 4 5 6

y 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6

x -6 -5 -4 -3 -2 -1 1 2 3 4 5 6

y 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6

10

8 6 4 2

10

8 6 4 2

-2

-4

26)

Trang 7

-1 -2 -3 -4

x

y 4 3 2 1

-1 -2 -3 -4

-1 -2 -3 -4

x

y 4 3 2 1

-1 -2 -3 -4

28)

Trang 8

-1 -2 -3 -4

x

y 4 3 2 1

-1 -2 -3 -4

-1 -2 -3 -4

x

y 4 3 2 1

-1 -2 -3 -4

30)

Trang 9

-1 -2 -3 -4

x

y 4 3 2 1

-1 -2 -3 -4

Trang 10

Use the table of values of f to estimate the limit.

33) Let f(x) = x2 + 8x - 2, find lim

x 1.9 1.99 1.999 2.001 2.01 2.1f(x) 5.043 5.364 5.396 5.404 5.436 5.763 ; limit = 5.40C)

f(x) 16.810 17.880 17.988 18.012 18.120 19.210 ; limit = 18.0D)

f(x) 1.19245 1.19925 1.19993 1.20007 1.20075 1.20745 ; limit = 1.20C)

f(x) 3.97484 3.99750 3.99975 4.00025 4.00250 4.02485 ; limit = 4.0D)

f(x) 1.19245 1.19925 1.19993 1.20007 1.20075 1.20745 ; limit = ∞

34)

Trang 11

35) Let f(x) = x2 - 5, find lim

Trang 12

f(x) 0.6561 0.6506 0.6501 0.6499 0.6494 0.6436 ; limit = 0.65C)

f(x) 0.8361 0.8336 0.8334 0.8333 0.8331 0.8305 ; limit = 0.8333D)

2 - 2 cos(x) < 1 hold for all values of x close

to zero What, if anything, does this tell you about x sin(x)

2 - 2 cos(x) ? Explain.

40)

Trang 13

MULTIPLE CHOICE Choose the one alternative that best completes the statement or answers the question.

41) Write the formal notation for the principle "the limit of a quotient is the quotient of the limits" andinclude a statement of any restrictions on the principle

A) If lim

x→a g(x) = M and limx→a f(x) = L, then limx→a

g(x)f(x) =

limx→a g(x)limx→a f(x)

limx→a g(x)limx→a f(x)

D) lim

x→a

g(x)f(x) = g(a)f(a), provided that f(a) ≠ 0

B) The limit of a sum or a difference is the sum or the difference of the functions

C) The limit of a sum or a difference is the sum or the difference of the limits

D) The sum or the difference of two functions is continuous

42)

43) The statement "the limit of a constant times a function is the constant times the limit" follows from

a combination of two fundamental limit principles What are they?

A) The limit of a product is the product of the limits, and a constant is continuous

B) The limit of a product is the product of the limits, and the limit of a quotient is the quotient ofthe limits

C) The limit of a constant is the constant, and the limit of a product is the product of the limits

D) The limit of a function is a constant times a limit, and the limit of a constant is the constant

Trang 14

Give an appropriate answer.

56)

Trang 15

63) lim

x→0

1 + x - 1x

Trang 16

75)

Trang 17

76) lim

x→6

x2 - 9x + 18x2 - 3x - 18

Provide an appropriate response.

79) It can be shown that the inequalities -x ≤ x cos 1

x ≤ x hold for all values of x ≥ 0

Trang 18

Compute the values of f(x) and use them to determine the indicated limit.

f(x) 16.810 17.880 17.988 18.012 18.120 19.210 ; limit = 18.0C)

f(x) 16.692 17.592 17.689 17.710 17.808 18.789 ; limit = 17.70D)

x 1.9 1.99 1.999 2.001 2.01 2.1f(x) 5.043 5.364 5.396 5.404 5.436 5.763 ; limit = 5.40

x 0.9 0.99 0.999 1.001 1.01 1.1f(x) 4.595 5.046 5.095 5.105 5.154 5.677 ; limit = 5.10C)

x 0.9 0.99 0.999 1.001 1.01 1.1f(x) 1.032 1.182 1.198 1.201 1.218 1.392 ; limit = 1.210D)

x 0.9 0.99 0.999 1.001 1.01 1.1f(x) 1.032 1.182 1.198 1.201 1.218 1.392 ; limit = ∞

83)

Trang 21

f(x) -0.02516 -0.00250 -0.00025 0.00025 0.00250 0.02485 ; limit = 0C)

f(x) 1.47736 1.49775 1.49977 1.50022 1.50225 1.52236 ; limit = 1.50D)

-2 -4 -6 -8 -10

x

y 4 2

-2 -4 -6 -8 -10

89)

Trang 22

-2 -4 -6 -8

x

y 8 6 4 2

-2 -4 -6 -8

Trang 23

92) Find lim

x→1-f(x).

x -5 -4 -3 -2 -1 1 2 3 4 5

f(x) 5 4 3 2 1

-1 -2 -3 -4 -5

x -5 -4 -3 -2 -1 1 2 3 4 5

f(x) 5 4 3 2 1

-1 -2 -3 -4 -5

f(x) 5 4 3 2 1

-1 -2 -3 -4 -5

x -5 -4 -3 -2 -1 1 2 3 4 5

f(x) 5 4 3 2 1

-1 -2 -3 -4 -5

93)

Trang 24

94) Find lim

x→0f(x).

x -5 -4 -3 -2 -1 1 2 3 4 5

y 5 4 3 2 1

-1 -2 -3 -4 -5

x -5 -4 -3 -2 -1 1 2 3 4 5

y 5 4 3 2 1

-1 -2 -3 -4 -5

94)

95) Find lim

x→0f(x).

x -5 -4 -3 -2 -1 1 2 3 4 5

y 5 4 3 2 1

-1 -2 -3 -4 -5

x -5 -4 -3 -2 -1 1 2 3 4 5

y 5 4 3 2 1

-1 -2 -3 -4 -5

95)

96) Find lim

x→0f(x).

x -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8

y 8 7 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6

x -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8

y 8 7 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6

96)

Trang 25

-2

-4 A

f(x) 5 4 3 2 1

-1 -2 -3 -4 -5

x -5 -4 -3 -2 -1 1 2 3 4 5

f(x) 5 4 3 2 1

-1 -2 -3 -4 -5

Trang 26

102) lim

x →

-2-6x2 - 4

108)

109) lim

x → 3+

x2 - 4x + 3x3 - x

Trang 28

Choose the graph that represents the given function without using a graphing utility.

120) f(x) = x

x - 1A)

x -10 -8 -6 -4 -2 2 4 6 8 10

y 4

2

-2

-4

x -10 -8 -6 -4 -2 2 4 6 8 10

y 4

y 4

2

-2

-4

x -10 -8 -6 -4 -2 2 4 6 8 10

y 4

y 4

2

-2

-4

x -10 -8 -6 -4 -2 2 4 6 8 10

y 4

y 4

2

-2

-4

x -10 -8 -6 -4 -2 2 4 6 8 10

y 4

2

-2

-4

120)

Trang 29

121) f(x) = x

x2 + x + 3

A)

x -10 -8 -6 -4 -2 2 4 6 8 10

y 4

2

-2

-4

x -10 -8 -6 -4 -2 2 4 6 8 10

y 4

y 4

2

-2

-4

x -10 -8 -6 -4 -2 2 4 6 8 10

y 4

y 4

2

-2

-4

x -10 -8 -6 -4 -2 2 4 6 8 10

y 4

y 4

2

-2

-4

x -10 -8 -6 -4 -2 2 4 6 8 10

y 4

2

-2

-4

121)

Trang 30

122) f(x) = x2 - 2

x3

A)

x -10 -8 -6 -4 -2 2 4 6 8 10

y 4

2

-2

-4

x -10 -8 -6 -4 -2 2 4 6 8 10

y 4

y 4

2

-2

-4

x -10 -8 -6 -4 -2 2 4 6 8 10

y 4

y 4

2

-2

-4

x -10 -8 -6 -4 -2 2 4 6 8 10

y 4

y 4

2

-2

-4

x -10 -8 -6 -4 -2 2 4 6 8 10

y 4

2

-2

-4

122)

Trang 31

123) f(x) = 1

x + 1

A)

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

B)

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

C)

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

D)

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

123)

Trang 32

124) f(x) = x - 1

x + 1

A)

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

B)

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

C)

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

D)

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

124)

Trang 33

125) f(x) = 1

(x + 2)2

A)

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

B)

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

C)

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

D)

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

125)

Trang 34

126) f(x) = 2x2

4 - x2

A)

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

B)

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

C)

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

D)

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

x -10 -8 -6 -4 -2 2 4 6 8 10

y 10 8 6 4 2

-2 -4 -6 -8 -10

Trang 35

130) lim

x→∞

x2 + 5x + 3x3 - 8x2 + 13

4

45

136)

137) lim

x→∞

49x2 + x - 3(x - 15)(x + 1)

Trang 36

139) lim

x→∞

-4x-1 + 2x-3-4x-2 + x-5

37

Trang 38

SHORT ANSWER Write the word or phrase that best completes each statement or answers the question Sketch the graph of a function y = f(x) that satisfies the given conditions.

155) f(0) = 0, f(1) = 3, f(-1) = -3, lim

x→-∞f(x) = -2, limx→∞f(x) = 2.

x y

x y

157)

Trang 41

d 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6 (1, -4)

t -6 -5 -4 -3 -2 -1 1 2 3 4 5 6

d 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6 (1, -4)

d 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6 (1, -4)

t -6 -5 -4 -3 -2 -1 1 2 3 4 5 6

d 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6 (1, -4)

169)

Trang 42

170) Is f continuous at x = 0?

f(x) =

x3,-2x,7,0,

d 10 8 6 4 2

-2 -4 -6 -8 -10

(2, 0)

t -5 -4 -3 -2 -1 1 2 3 4 5

d 10 8 6 4 2

-2 -4 -6 -8 -10 (2, 0)

d 10 8 6 4 2

-2 -4 -6 -8 -10

(2, 0)

t -5 -4 -3 -2 -1 1 2 3 4 5

d 10 8 6 4 2

-2 -4 -6 -8 -10 (2, 0)

A) discontinuous only when x = -6 B) discontinuous only when x = 1

172)

(x + 2)2 + 4

C) discontinuous only when x = -2 D) discontinuous only when x = 8

Trang 43

175) y = 4

x2 - 9

A) discontinuous only when x = 9 B) discontinuous only when x = -3

C) discontinuous only when x = -3 or x = 3 D) discontinuous only when x = -9 or x = 9

175)

176) y = 3

x + 4 -

x28

C) discontinuous only when x = -12 D) discontinuous only when x = -8 or x = -4

176)

177) y = sin (4θ)

A) discontinuous only when θ = π

177)

178) y = 4 cos θ

θ + 1

C) discontinuous only when θ = π

178)

179) y = 8x + 8

A) continuous on the interval - 1, ∞ B) continuous on the interval - 1, ∞

C) continuous on the interval 1, ∞ D) continuous on the interval -∞, - 1

179)

180) y = 47x - 8

A) continuous on the interval -∞, 8

8

7, ∞C) continuous on the interval 8

7, ∞

180)

181) y = x2 - 3

A) continuous on the interval [- 3, 3]

B) continuous on the intervals (-∞, - 3] and [ 3, ∞)

C) continuous everywhere

D) continuous on the interval [ 3, ∞)

181)

Trang 44

Provide an appropriate response.

182) Is f continuous on (-2, 4]?

f(x) =

x3,-4x,3,0,

d 10 8 6 4 2

-2 -4 -6 -8 -10

(2, 0)

t -5 -4 -3 -2 -1 1 2 3 4 5

d 10 8 6 4 2

-2 -4 -6 -8 -10 (2, 0)

Trang 45

SHORT ANSWER Write the word or phrase that best completes each statement or answers the question Provide an appropriate response.

190) Use the Intermediate Value Theorem to prove that 7x3 + 9x2 - 6x - 5 = 0 has a solution

Trang 46

Solve the problem.

199) Select the correct statement for the definition of the limit: lim

x→x0f(x) = Lmeans that

A) if given a number ε > 0, there exists a number δ > 0, such that for all x,

200) Identify the incorrect statements about limits

I The number L is the limit of f(x) as x approaches x0 if f(x) gets closer to L as x approaches x0

II The number L is the limit of f(x) as x approaches x0 if, for any ε > 0, there corresponds a δ > 0

such that f(x) - L < ε whenever 0 < x - x0 < δ

III The number L is the limit of f(x) as x approaches x0 if, given any ε > 0, there exists a value of x

y

0

y = x + 24.2

L = 4

ε = 0.2

201)

Trang 47

x y

y

0

y = 4x - 26.2

6

5.8

 2 1.95 2.05

NOT TO SCALE

f(x) = 4x - 2x0 = 2

203)

Trang 48

205)

x y

L = 6

ε = 0.2

205)

Trang 49

0

y = x1.98

L = 3

ε = 14

207)

Trang 50

x y

y

0

y = x - 31.25

L = 1

ε = 14

208)

209)

x y

y

0

y = x25

L = 4

ε = 1

209)

Trang 51

x y

y

0

y = x2 - 19

SHORT ANSWER Write the word or phrase that best completes each statement or answers the question.

Prove the limit statement

Trang 56

-2 -4 -6 -8

x

y 8 6 4 2

-2 -4 -6 -8

156) Answers may vary One possible answer:

x

y 8 6 4 2

-2 -4 -6 -8

x

y 8 6 4 2

-2 -4 -6 -8

Trang 57

Answer Key

Testname: UNTITLED1

157) Answers may vary One possible answer:

x -12 -10 -8 -6 -4 -2 2 4 6 8 10 12

y 12 10 8 6 4 2 -2 -4 -6 -8 -10 -12

x -12 -10 -8 -6 -4 -2 2 4 6 8 10 12

y 12 10 8 6 4 2 -2 -4 -6 -8 -10 -12

158) Answers may vary One possible answer:

x

y 2

-2

x

y 2

Trang 58

190) Let f(x) = 7x3 + 9x2 - 6x - 5 and let y0 = 0 f(-2) = -13 and f(-1) = 3 Since f is continuous on [-2, -1] and since y0 = 0

is between f(-2) and f(-1), by the Intermediate Value Theorem, there exists a c in the interval (-2 , -1) with theproperty that f(c) = 0 Such a c is a solution to the equation 7x3 + 9x2 - 6x - 5 = 0

191) Let f(x) = -2x4 - 5x3 - 3x - 9 and let y0 = 0 f(-2) = 5 and f(-1) = -3 Since f is continuous on [-2, -1] and since y0 = 0

is between f(-2) and f(-1), by the Intermediate Value Theorem, there exists a c in the interval (-2, -1) with theproperty that f(c) = 0 Such a c is a solution to the equation -2x4 - 5x3 - 3x - 9 = 0

192) Let f(x) = x(x - 2)2 and let y0 = 2 f(1) = 1 and f(3) = 3 Since f is continuous on [1, 3] and since y0 = 2 is between f(1)and f(3), by the Intermediate Value Theorem, there exists a c in the interval (1, 3) with the property that f(c) = 2 Such

a c is a solution to the equation x(x - 2)2 = 2

193) Let f(x) = sin x

x and let y0 = 14 f π

2 ≈ 0.6366 and f(π) = 0 Since f is continuous on π

2, π and since y0 = 14 is between

Trang 59

217) Let ε > 0 be given Choose δ = ε Then 0 < x - 8 < δ implies that

x - 8 - 16 < ε218) Let ε > 0 be given Choose δ = ε/2 Then 0 < x - 9 < δ implies that

x - 9 - 21 < ε219) Let ε > 0 be given Choose δ = min{9/2, 81ε/2} Then 0 < x - 9 < δ implies that

1

x- 1

9 = 9 - x9x

= 1

x ∙ 1

9 ∙ x - 9

< 19/2 ∙ 1

9 ∙ 81ε

2 = εThus, 0 < x - 9 < δ implies that 1

x - 1

9 < ε

Ngày đăng: 19/10/2017, 15:55

TỪ KHÓA LIÊN QUAN