Choose the one alternative that best completes the statement or answers the question... A Either the limit of fx as x→a from the left exists or the limit of fx as x→a from the right exis
Trang 1MULTIPLE CHOICE Choose the one alternative that best completes the statement or answers the question Find the average velocity of the function over the given interval.
7)
8) g(t) = 3 + tan t, - π
4,
π4
Trang 2Use the table to find the instantaneous velocity of y at the specified value of x.
0.48
1.08
1.92
34.32
5.88
11)
Trang 4Solve the problem.
x→0f(x) does not exist.
x→0f(x) does not exist.
21)
22) What conditions, when present, are sufficient to conclude that a function f(x) has a limit as x
approaches some value of a?
A) Either the limit of f(x) as x→a from the left exists or the limit of f(x) as x→a from the right
existsB) The limit of f(x) as x→a from the left exists, the limit of f(x) as x→a from the right exists, and
at least one of these limits is the same as f(a)
C) f(a) exists, the limit of f(x) as x→a from the left exists, and the limit of f(x) as x→a from the
right exists
D) The limit of f(x) as x→a from the left exists, the limit of f(x) as x→a from the right exists, andthese two limits are the same
22)
Trang 5Use the graph to evaluate the limit.
23) lim
x→-1f(x)
x -6 -5 -4 -3 -2 -1 1 2 3 4 5 6
y
1
-1
x -6 -5 -4 -3 -2 -1 1 2 3 4 5 6
-1 -2 -3 -4
x
y 4 3 2 1
-1 -2 -3 -4
24)
Trang 625) lim
x→0f(x)
x -6 -5 -4 -3 -2 -1 1 2 3 4 5 6
y 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6
x -6 -5 -4 -3 -2 -1 1 2 3 4 5 6
y 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6
10
8 6 4 2
10
8 6 4 2
-2
-4
26)
Trang 7-1 -2 -3 -4
x
y 4 3 2 1
-1 -2 -3 -4
-1 -2 -3 -4
x
y 4 3 2 1
-1 -2 -3 -4
28)
Trang 8-1 -2 -3 -4
x
y 4 3 2 1
-1 -2 -3 -4
-1 -2 -3 -4
x
y 4 3 2 1
-1 -2 -3 -4
30)
Trang 9-1 -2 -3 -4
x
y 4 3 2 1
-1 -2 -3 -4
Trang 10Use the table of values of f to estimate the limit.
33) Let f(x) = x2 + 8x - 2, find lim
x 1.9 1.99 1.999 2.001 2.01 2.1f(x) 5.043 5.364 5.396 5.404 5.436 5.763 ; limit = 5.40C)
f(x) 16.810 17.880 17.988 18.012 18.120 19.210 ; limit = 18.0D)
f(x) 1.19245 1.19925 1.19993 1.20007 1.20075 1.20745 ; limit = 1.20C)
f(x) 3.97484 3.99750 3.99975 4.00025 4.00250 4.02485 ; limit = 4.0D)
f(x) 1.19245 1.19925 1.19993 1.20007 1.20075 1.20745 ; limit = ∞
34)
Trang 1135) Let f(x) = x2 - 5, find lim
Trang 12f(x) 0.6561 0.6506 0.6501 0.6499 0.6494 0.6436 ; limit = 0.65C)
f(x) 0.8361 0.8336 0.8334 0.8333 0.8331 0.8305 ; limit = 0.8333D)
2 - 2 cos(x) < 1 hold for all values of x close
to zero What, if anything, does this tell you about x sin(x)
2 - 2 cos(x) ? Explain.
40)
Trang 13MULTIPLE CHOICE Choose the one alternative that best completes the statement or answers the question.
41) Write the formal notation for the principle "the limit of a quotient is the quotient of the limits" andinclude a statement of any restrictions on the principle
A) If lim
x→a g(x) = M and limx→a f(x) = L, then limx→a
g(x)f(x) =
limx→a g(x)limx→a f(x)
limx→a g(x)limx→a f(x)
D) lim
x→a
g(x)f(x) = g(a)f(a), provided that f(a) ≠ 0
B) The limit of a sum or a difference is the sum or the difference of the functions
C) The limit of a sum or a difference is the sum or the difference of the limits
D) The sum or the difference of two functions is continuous
42)
43) The statement "the limit of a constant times a function is the constant times the limit" follows from
a combination of two fundamental limit principles What are they?
A) The limit of a product is the product of the limits, and a constant is continuous
B) The limit of a product is the product of the limits, and the limit of a quotient is the quotient ofthe limits
C) The limit of a constant is the constant, and the limit of a product is the product of the limits
D) The limit of a function is a constant times a limit, and the limit of a constant is the constant
Trang 14Give an appropriate answer.
56)
Trang 1563) lim
x→0
1 + x - 1x
Trang 1675)
Trang 1776) lim
x→6
x2 - 9x + 18x2 - 3x - 18
Provide an appropriate response.
79) It can be shown that the inequalities -x ≤ x cos 1
x ≤ x hold for all values of x ≥ 0
Trang 18Compute the values of f(x) and use them to determine the indicated limit.
f(x) 16.810 17.880 17.988 18.012 18.120 19.210 ; limit = 18.0C)
f(x) 16.692 17.592 17.689 17.710 17.808 18.789 ; limit = 17.70D)
x 1.9 1.99 1.999 2.001 2.01 2.1f(x) 5.043 5.364 5.396 5.404 5.436 5.763 ; limit = 5.40
x 0.9 0.99 0.999 1.001 1.01 1.1f(x) 4.595 5.046 5.095 5.105 5.154 5.677 ; limit = 5.10C)
x 0.9 0.99 0.999 1.001 1.01 1.1f(x) 1.032 1.182 1.198 1.201 1.218 1.392 ; limit = 1.210D)
x 0.9 0.99 0.999 1.001 1.01 1.1f(x) 1.032 1.182 1.198 1.201 1.218 1.392 ; limit = ∞
83)
Trang 21f(x) -0.02516 -0.00250 -0.00025 0.00025 0.00250 0.02485 ; limit = 0C)
f(x) 1.47736 1.49775 1.49977 1.50022 1.50225 1.52236 ; limit = 1.50D)
-2 -4 -6 -8 -10
x
y 4 2
-2 -4 -6 -8 -10
89)
Trang 22-2 -4 -6 -8
x
y 8 6 4 2
-2 -4 -6 -8
Trang 2392) Find lim
x→1-f(x).
x -5 -4 -3 -2 -1 1 2 3 4 5
f(x) 5 4 3 2 1
-1 -2 -3 -4 -5
x -5 -4 -3 -2 -1 1 2 3 4 5
f(x) 5 4 3 2 1
-1 -2 -3 -4 -5
f(x) 5 4 3 2 1
-1 -2 -3 -4 -5
x -5 -4 -3 -2 -1 1 2 3 4 5
f(x) 5 4 3 2 1
-1 -2 -3 -4 -5
93)
Trang 2494) Find lim
x→0f(x).
x -5 -4 -3 -2 -1 1 2 3 4 5
y 5 4 3 2 1
-1 -2 -3 -4 -5
x -5 -4 -3 -2 -1 1 2 3 4 5
y 5 4 3 2 1
-1 -2 -3 -4 -5
94)
95) Find lim
x→0f(x).
x -5 -4 -3 -2 -1 1 2 3 4 5
y 5 4 3 2 1
-1 -2 -3 -4 -5
x -5 -4 -3 -2 -1 1 2 3 4 5
y 5 4 3 2 1
-1 -2 -3 -4 -5
95)
96) Find lim
x→0f(x).
x -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8
y 8 7 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6
x -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8
y 8 7 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6
96)
Trang 25-2
-4 A
f(x) 5 4 3 2 1
-1 -2 -3 -4 -5
x -5 -4 -3 -2 -1 1 2 3 4 5
f(x) 5 4 3 2 1
-1 -2 -3 -4 -5
Trang 26102) lim
x →
-2-6x2 - 4
108)
109) lim
x → 3+
x2 - 4x + 3x3 - x
Trang 28Choose the graph that represents the given function without using a graphing utility.
120) f(x) = x
x - 1A)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
2
-2
-4
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
y 4
2
-2
-4
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
y 4
2
-2
-4
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
y 4
2
-2
-4
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
2
-2
-4
120)
Trang 29121) f(x) = x
x2 + x + 3
A)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
2
-2
-4
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
y 4
2
-2
-4
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
y 4
2
-2
-4
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
y 4
2
-2
-4
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
2
-2
-4
121)
Trang 30122) f(x) = x2 - 2
x3
A)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
2
-2
-4
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
y 4
2
-2
-4
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
y 4
2
-2
-4
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
y 4
2
-2
-4
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
2
-2
-4
122)
Trang 31123) f(x) = 1
x + 1
A)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
B)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
C)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
D)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
123)
Trang 32124) f(x) = x - 1
x + 1
A)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
B)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
C)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
D)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
124)
Trang 33125) f(x) = 1
(x + 2)2
A)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
B)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
C)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
D)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
125)
Trang 34126) f(x) = 2x2
4 - x2
A)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
B)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
C)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
D)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
Trang 35130) lim
x→∞
x2 + 5x + 3x3 - 8x2 + 13
4
45
136)
137) lim
x→∞
49x2 + x - 3(x - 15)(x + 1)
Trang 36139) lim
x→∞
-4x-1 + 2x-3-4x-2 + x-5
37
Trang 38SHORT ANSWER Write the word or phrase that best completes each statement or answers the question Sketch the graph of a function y = f(x) that satisfies the given conditions.
155) f(0) = 0, f(1) = 3, f(-1) = -3, lim
x→-∞f(x) = -2, limx→∞f(x) = 2.
x y
x y
157)
Trang 41d 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6 (1, -4)
t -6 -5 -4 -3 -2 -1 1 2 3 4 5 6
d 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6 (1, -4)
d 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6 (1, -4)
t -6 -5 -4 -3 -2 -1 1 2 3 4 5 6
d 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6 (1, -4)
169)
Trang 42170) Is f continuous at x = 0?
f(x) =
x3,-2x,7,0,
d 10 8 6 4 2
-2 -4 -6 -8 -10
(2, 0)
t -5 -4 -3 -2 -1 1 2 3 4 5
d 10 8 6 4 2
-2 -4 -6 -8 -10 (2, 0)
d 10 8 6 4 2
-2 -4 -6 -8 -10
(2, 0)
t -5 -4 -3 -2 -1 1 2 3 4 5
d 10 8 6 4 2
-2 -4 -6 -8 -10 (2, 0)
A) discontinuous only when x = -6 B) discontinuous only when x = 1
172)
(x + 2)2 + 4
C) discontinuous only when x = -2 D) discontinuous only when x = 8
Trang 43175) y = 4
x2 - 9
A) discontinuous only when x = 9 B) discontinuous only when x = -3
C) discontinuous only when x = -3 or x = 3 D) discontinuous only when x = -9 or x = 9
175)
176) y = 3
x + 4 -
x28
C) discontinuous only when x = -12 D) discontinuous only when x = -8 or x = -4
176)
177) y = sin (4θ)
3θ
A) discontinuous only when θ = π
177)
178) y = 4 cos θ
θ + 1
C) discontinuous only when θ = π
178)
179) y = 8x + 8
A) continuous on the interval - 1, ∞ B) continuous on the interval - 1, ∞
C) continuous on the interval 1, ∞ D) continuous on the interval -∞, - 1
179)
180) y = 47x - 8
A) continuous on the interval -∞, 8
8
7, ∞C) continuous on the interval 8
7, ∞
180)
181) y = x2 - 3
A) continuous on the interval [- 3, 3]
B) continuous on the intervals (-∞, - 3] and [ 3, ∞)
C) continuous everywhere
D) continuous on the interval [ 3, ∞)
181)
Trang 44Provide an appropriate response.
182) Is f continuous on (-2, 4]?
f(x) =
x3,-4x,3,0,
d 10 8 6 4 2
-2 -4 -6 -8 -10
(2, 0)
t -5 -4 -3 -2 -1 1 2 3 4 5
d 10 8 6 4 2
-2 -4 -6 -8 -10 (2, 0)
Trang 45SHORT ANSWER Write the word or phrase that best completes each statement or answers the question Provide an appropriate response.
190) Use the Intermediate Value Theorem to prove that 7x3 + 9x2 - 6x - 5 = 0 has a solution
Trang 46Solve the problem.
199) Select the correct statement for the definition of the limit: lim
x→x0f(x) = Lmeans that
A) if given a number ε > 0, there exists a number δ > 0, such that for all x,
200) Identify the incorrect statements about limits
I The number L is the limit of f(x) as x approaches x0 if f(x) gets closer to L as x approaches x0
II The number L is the limit of f(x) as x approaches x0 if, for any ε > 0, there corresponds a δ > 0
such that f(x) - L < ε whenever 0 < x - x0 < δ
III The number L is the limit of f(x) as x approaches x0 if, given any ε > 0, there exists a value of x
y
0
y = x + 24.2
L = 4
ε = 0.2
201)
Trang 47x y
y
0
y = 4x - 26.2
6
5.8
2 1.95 2.05
NOT TO SCALE
f(x) = 4x - 2x0 = 2
203)
Trang 48205)
x y
L = 6
ε = 0.2
205)
Trang 490
y = x1.98
L = 3
ε = 14
207)
Trang 50x y
y
0
y = x - 31.25
L = 1
ε = 14
208)
209)
x y
y
0
y = x25
L = 4
ε = 1
209)
Trang 51x y
y
0
y = x2 - 19
SHORT ANSWER Write the word or phrase that best completes each statement or answers the question.
Prove the limit statement
Trang 56-2 -4 -6 -8
x
y 8 6 4 2
-2 -4 -6 -8
156) Answers may vary One possible answer:
x
y 8 6 4 2
-2 -4 -6 -8
x
y 8 6 4 2
-2 -4 -6 -8
Trang 57Answer Key
Testname: UNTITLED1
157) Answers may vary One possible answer:
x -12 -10 -8 -6 -4 -2 2 4 6 8 10 12
y 12 10 8 6 4 2 -2 -4 -6 -8 -10 -12
x -12 -10 -8 -6 -4 -2 2 4 6 8 10 12
y 12 10 8 6 4 2 -2 -4 -6 -8 -10 -12
158) Answers may vary One possible answer:
x
y 2
-2
x
y 2
Trang 58190) Let f(x) = 7x3 + 9x2 - 6x - 5 and let y0 = 0 f(-2) = -13 and f(-1) = 3 Since f is continuous on [-2, -1] and since y0 = 0
is between f(-2) and f(-1), by the Intermediate Value Theorem, there exists a c in the interval (-2 , -1) with theproperty that f(c) = 0 Such a c is a solution to the equation 7x3 + 9x2 - 6x - 5 = 0
191) Let f(x) = -2x4 - 5x3 - 3x - 9 and let y0 = 0 f(-2) = 5 and f(-1) = -3 Since f is continuous on [-2, -1] and since y0 = 0
is between f(-2) and f(-1), by the Intermediate Value Theorem, there exists a c in the interval (-2, -1) with theproperty that f(c) = 0 Such a c is a solution to the equation -2x4 - 5x3 - 3x - 9 = 0
192) Let f(x) = x(x - 2)2 and let y0 = 2 f(1) = 1 and f(3) = 3 Since f is continuous on [1, 3] and since y0 = 2 is between f(1)and f(3), by the Intermediate Value Theorem, there exists a c in the interval (1, 3) with the property that f(c) = 2 Such
a c is a solution to the equation x(x - 2)2 = 2
193) Let f(x) = sin x
x and let y0 = 14 f π
2 ≈ 0.6366 and f(π) = 0 Since f is continuous on π
2, π and since y0 = 14 is between
Trang 59217) Let ε > 0 be given Choose δ = ε Then 0 < x - 8 < δ implies that
x - 8 - 16 < ε218) Let ε > 0 be given Choose δ = ε/2 Then 0 < x - 9 < δ implies that
x - 9 - 21 < ε219) Let ε > 0 be given Choose δ = min{9/2, 81ε/2} Then 0 < x - 9 < δ implies that
1
x- 1
9 = 9 - x9x
= 1
x ∙ 1
9 ∙ x - 9
< 19/2 ∙ 1
9 ∙ 81ε
2 = εThus, 0 < x - 9 < δ implies that 1
x - 1
9 < ε