1. Trang chủ
  2. » Giáo án - Bài giảng

PHÉP ĐẾM

26 647 1
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Quy tắc đếm
Thể loại Bài
Định dạng
Số trang 26
Dung lượng 2,67 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

*Quy tắc :Một công việc được hoàn thành bởi một trong hai hành động..  Nếu hành động này có m cách thực hiện, hành động kia có n cách thực hiện không trùng với bất kì cách nào của hành

Trang 1

Chào Đón Quý Thầy Cô

Trang 4

Bài 1:PHÉP ĐẾM

Ví dụ2 : Cho tậâp A= { 1 ; 2 ; 3 ; 5 ; 7 ; 9 }

Tậâp B= { 0 ; 1 ; 2 ; 3 ; 4 ; 6 ; 8 }

Hãy chỉ ra:

a)Số phần tử của tập A b) Số phần tử của tập B c) Số phần tử của tâp d) Số phần tử của tập e) Số phần tử của tập A\B

a)Số phần tử của tập A: n(A)=6

b) Số phần tử của tập B:n(B)= 7

c) Số phần tử của tâp là =3

d) Số phần tử của tập là =10

e) Số phần tử của tập A\B: n(A\B)=4

1 3

2

8 6

4 0

) ( A B

n

) ( A B

5 3

2 9

A

Tiết 21: QUY TẮC ĐẾM

Trang 5

Chú ýÙ:

B

B A

* Nếu A và B là tập hợp hữu hạn bất kỳ không giao nhau thì:

n(B) n(A)

) ( AB = +

n

*Nếu A và B là tập hợp hữu hạn bất kỳ thì :

) (

) ( )

( )

Trang 6

Ví dụ 3: Cĩ 3 quyển sách khác nhau và 4 quyển vở khác nhau Hỏi cĩ bao nhiêu cách chọn 1 quyển trong số các quyển đĩ?

1 Q.Sách : Có 3 cách 1Q.Vở : Có 4 cách => Có 3+4= 7cách

Tiết 21: QUY TẮC ĐẾM

Trang 7

*Quy tắc :Một công việc được hoàn thành bởi một trong hai hành động

 Nếu hành động này có m cách thực hiện,

hành động kia có n cách thực hiện không trùng với bất kì cách nào của hành động thứ nhất thì

Công việc đó có m + n cách thực hiện

1- Quy tắc cộng

Trang 8

Ví dụ 4 : Cĩ 5 viên bi xám, 2 viên bi trắng, và 4 viên bi đen Hỏi cĩ bao nhiêu cách chọn 1 viên bi trong số các viên bi đĩ?

Bi xám : 5 cách chọn

Bi trắng: 2 cách chọn

Bi đen : 4 cách chọn

=> Có : 5 + 2 + 4 = 11 cách chọn 1 trong các hòn bi trên

4 3

2 1

2 1

Tiết 21: QUY TẮC ĐẾM

1 Quy tắc cộng

Trang 9

Ví dụ 5: Từ các số 1 , 2, 3, 4 , 5 ,6 ,7 ,8 ,9

có bao nhiêu cách chọn một số hoặc là

số chẵn hoặc là số nguyên tố ?

Gọi A là tập hợp các số chẵn A= { 2,4,6,8}

B là tập hợp các số nguyên tố B = { 2,3,5,7}

Nên theo công thức :

7

1 - 4

4

B) n(A

- n(B) n(A)

)

(

= +

=

∩ +

=

A n

Trang 10

Ví dụ 6: Bạn Hồng có 3 cái váy và 3 đôi giầy

? Hỏi có bao nhiêu cách để bạn chọn 1 bộ ( gồm 1 váy+1 đôi giầy)

Có 3.3 = 9 cách chọn

Tiết 21: QUY TẮC ĐẾM

1 Quy tắc cộng

Bài toán Có thể áp dụng quy tắc cộng không?

Trang 11

*Quy tắc: Một công việc được hoàn thành bởi hai hành động liên tiếp

 Nếu có m cách thực hiện hành động thứ nhất và ứng với mỗi cách đó có n cách thực hiện hành động thứ 2 thì Công việc đó có m n cách thực hiện

2.Quy tắc nhân

1 Quy tắc cộng

*Chú ý: quy tắc nhân có thể mở rộng liên tiếp cho nhiều hành động

Trang 12

Ví dụ 7: Từ thành phố A đến thành phố B có thể đi bằng các phương tiện như: Oâtô, tàu thủy, máy bay, xe đạp.Từ thành phố

B đến thành phố C có thể đi bằng phương tiện như: Máy bay, tàu thủy.Để đi từ A đến C bắt buộc phải đi qua C

2.Quy tắc nhân

Tiết 21: QUY TẮC ĐẾM

1 Quy tắc cộng

Trang 13

C

Trang 14

Baøi 1: Coù bao nhieđu soẫ töï nhieđn coù 3 chöõ soâ laây töø caùc soâ

thoạ maõn

a) Caùc chöõ soâ tuyø yù

b) Caùc chöõ soâ khaùc nhau

{1;2;3;4;5}

BAØI TAÔP

{ 1 ; 2 ; 3 ; 4 ; 5 }

∗ ∗ b a ∈ ∈ { 1 ; 2 ; 3 ; 4 ; 5 } Neđn coù 5 caùch chón b Neđn coù 5 caùch chón a

Vaôy coù 5.5.5 = 125 soâ

a) Gói n = abc laø soâ töï nhieđn coù 3 chöõ soâ

{ 1 ; 2 ; 3 ; 4 ; 5 }

c ∗ ∈ Neđn coù 5 caùch chón c

2.Quy taĩc nhađn

Tieât 21: QUY TAĨC ÑEÂM

1 Quy taĩc coông

Trang 15

{ 1 ; 2 ; 3 ; 4 ; 5 } \ { } ∗ ba Neđn coù 4 caùch chón b

{ 1 ; 2 ; 3 ; 4 ; 5 }

a ∗ ∈ Neđn coù 5 caùch chón a

Vaôy coù 5.4.3 = 60 soâ

b) Gói n = abc laø soâ töï nhieđn coù 3 chöõ soâ

{ 1 ; 2 ; 3 ; 4 ; 5 } \ { , } c

∗ ∈ a b Neđn coù 3 caùch chón c

Baøi 1: Coù bao nhieđu soẫ töï nhieđn coù 3 chöõ soâ laây töø caùc soâ { 1;2;3;4;5 } thoạ maõn

a)Caùc chöõ soâ tuyø yù

b)Caùc chöõ soâ khaùc nhau

2.Quy taĩc nhađn

1 Quy taĩc coông

Trang 16

Nhóm số: …

Báo cáo số thành viên trong nhóm

Số nam:

………

Số nư:

……… Tổng số:

……… a) Có bao nhiêu cách chọn ra 1 nhóm trưởng và 1 nhóm

nhất một người là nư?(Giải thích)

………

………

…………

2.Quy taộc nhaõn

Tieỏt 21: QUY TAẫC ẹEÁM

1 Quy taộc coọng

Baứi taõp 2:Hoaùt ủoọng nhoựm

Trang 17

các thầy cô giáo

Trang 18

Bài 2 : Có bao nhiêu số tự nhiên có 2 chữ số thỏa mãn: a) Là số chẵn ( không nhất thiết khác nhau )

b) Là số lẻ ( không nhất thiết khác nhau ) c) Là số lẻ và khác nhau

d) Là số chẵn và khác nhau

Nên có 5 cách chọn b

Vậy có 9 5 = 45 cách

Trang 19

{ 1 , 3 , 5 , 7 , 9 }

b

∗ ∈

Nên có 5 cách chọn b

Vậy có 9 5 = 45 cách

{ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 }

a

Nên có 9 cách chọn a

Trang 20

{ 1 , 3 , 5 , 7 , 9 }

b

∗ ∈

Nên có 5 cách chọn b

Vậy có 8 5 = 40 cách

{ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 } { } \ 0, b

a

Nên có 8 cách chọn a

c) Gọi n = ab là số lẻ và có hai chữ số khác nhau :

Trang 21

{ 2 , 4 , 6 , 8 } có 4 cách b

Nên ∈

Vậy có 4.8 = 32 cách

{ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 } { } \ 0, b nên có 8 cách

a

Kết luận : có 9 + 32 = 41 cách

{ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 } { } \ 0

Nên a

Vậy có 1 9 = 9 cách

Trang 22

1 Q.sách : 3 cách

Trang 23

Ví dụ 1 : Nếu A = { a,b,c}

thì số phần tử của tập hợp A là 3

Ta viết: n(A)= 3 hay |A| = 3

Trang 24

QUI TẮC NHÂN

Số cách thực hiện công việc H là:

Cơng việc H

Bước 1 Bước 2

Bước k

…….

Có Mk cách thực hiện

Có M1 cách thực hiện Có M2 cách thực hiện

M1 M2… Mk

Trang 25

Số Cách thực hiện công việc H là:

Cơng việc H

Cách 1 Cách2

Cách k

…….

Có Mk cách thực hiện

Có M1 cách thực hiện Có M2 cách thực hiện

M1 + M2 +… + Mk

Trang 26

Ví dụ 3:

A = { 1 , 2 , 3, 5 , 7 , 8 , 9 } , B = { 2 , 4 , 6 , 8 } Hỏi có bao nhiêu cách chọn ?

a) 1 phần tử trong các phần tử của tập A

b) 1 phần tử trong các phần tử của tập B

c) 1 phần tử trong tập A hoặc B

Hoặc chọn 1 trong 4 phần tử của tập B Nhưng phải bỏ đi số phần tử chung của hai

tập A và B gồm 2 phần tử chung Như vậy : 7 + 4 - 2 = 9 cách chọn 1 phần tử

trong tập A hoặc B

Ngày đăng: 09/07/2013, 01:26

Xem thêm

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w