1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi học sinh giỏi toán 7

4 144 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 199 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Chứng minh DM = EN c Chứng minh tam giác AMN là tam giác cân.. Chứng minh AI là tia phân giác chung của 2 góc BAC và MAN... Chứng minh: AI là tia phân giác chung của và... Tam giác AMN

Trang 1

phòng GD và ĐT phù yên Đề thi chọn học sinh giỏi cấp trờng

Trờng THCS Võ Thị Sáu lớp 7- năm học 2010- 2011

Môn: Toán

Đề dự bị Thời gian: 120 phút (Không kể

thời gian giao đề)

Bài 1: Thực hiện phép tính:

A =

1 1 1 1

5 7 2 3

+

B =

2 3 4 100

99 98 97 1

+ + + +

Bài 2: Tìm giá trị nhỏ nhất của biểu thức sau khi x thay đổi:

B = x− 2 + − 3 x

Bài 3: Chứng minh rằng:

a) 106 - 57 chia hết cho 59

b) 3135 229 - 3136 36 chia hết cho 7

Bài 4: Tìm các số hữu tỉ dơng x, y, z biết:

1

2

x

y

z

= −

+

Bài 5: Cho tam giác cân ABC có AB = AC Trên tia đối của các tia BA

và CA lấy hai điểm D và E, sao cho BD = CE

a) Chứng minh DE // BC

b) Từ D kẻ DM vuông góc với BC, từ E kẻ EN vuông góc với BC Chứng minh DM = EN

c) Chứng minh tam giác AMN là tam giác cân

d) Từ B và C kẻ các đờng vuông góc với AM và AN chúng cắt nhau tại I Chứng minh AI là tia phân giác chung của 2 góc BAC và MAN

Trang 2

phßng GD vµ §T phï yªn k× thi chän häc sinh giái cÊp trêng

Trêng THCS Vâ ThÞ S¸u líp 7- n¨m häc 2010- 2011

M«n: To¸n

§¸p ¸n vµ thang ®iÓm

B

bµi 1

A =

1 1 1 1

5 7 2 3

+

=

1 1 1 1 1 1

8 5 7 2 3 5

3 3 3 3 3 3

8 5 7 4 6 10

+

=

1 1 1

1 1 1 2

4 6 10

8 5 7

1 1 3 1 1 1

8 5 7 4 6 10

 + − 

+

 − +   + − 

= 1 2 1

3 3 + =

1

1 0,25

6

B =

2 3 4 100

99 98 97 1

+ + + +

=

1 1 1 1

2 3 4 100

100 1 100 2 100 3 100 99

+ + + +

=

1 1 1 1

2 3 4 100

100 100 100 100 1 2 3 99

+ + + +

=

1 1 1 1

2 3 4 100

100 100 99

2 3 99

+ + + +

+ × + + + ÷−

=

1 1 1 1

2 3 4 100

1 100

2 3 99

+ + + +

+ × + + + ÷

1

1

0,5

0,5

Trang 3

=

1 1 1 1

2 3 4 100

100

2 3 99 100

+ + + +

ì + + + + ữ

= 1

100

0,5 0,25

2

Ta xét các trờng hợp:

+ Nếu x < 2 ⇒ x - 2 < 0 ; 3 - x > 0

Do đó: x− = − − 2 (x 2) ; 3 − = −x 3 x

⇒ B = - (x - 2) + 3 - x = -2x + 5

Vì x < 2 nên -x > -2 Do đó: B = -2x + 5 > (-2).2

+ 5

Hay B > 1 ⇒ B nhỏ nhất bằng 2

+ Nếu 2 ≤ ≤x 3 ⇒ x - 2 ≥ 0 ; 3 - x ≥ 0

⇒ B = x - 2 + 3 - x = 1

Vậy B = 1

+ Nếu x > 3 ⇒ x - 2 > 0 ; 3 - x < 0

⇒ B = x - 2 - (3 - x) = 2x - 5

Vì x > 3 nên B = 2x - 5 > 2 3 - 5

Hay B > 1 Vậy B nhỏ nhất bằng 2

Từ 3 trờng hợp trên ta đợc B đạt giá trị nhỏ nhất

bằng 1 khi 2 ≤ ≤x 3

0,75 0,75

0,75 0,25

2,5

3

a) 106 - 57 = (2.5)6 - 57 = 26.56 - 57

= 56.(26 - 5) = 56 59 M 59 0,5

1,5

b) 3135 229 - 3136 36 = 3135 229 - 3136 (1 + 35)

= 3135 229 - 3136 - 3136 35 = 3135 (229 - 313) - 3136 35 = 3135 (-14) - 3136 35

= 7 (-2 3135 - 3136 5) M 7 1

4

Biến đổi vế phải thành dạng tơng tự vế trái:

+ Suy ra x = 1 ; y = 1 ; z = 3

0,75

0,25

1

5

A

H

K

M B

C N

0,5

9

ABC: AB = AC; BD = CE

GT (Dtia đối BA; Etia đối

CA)

a) DE // BC

b) DMBC; ENBC Chứng

minh: DM = EN

KL c)AMN cân

d) BHAM; CKAN; BH

CK = I Chứng minh: AI

tia phân giác chung

của

Trang 4

D

E

Chứng minh:

a) Ta có: AB = AC (gt) và BD = CE (gt) ⇒ AD = AE

∆ADE có AD = AE nên là tam giác cân

Hai tam giác cân ABC và ADE có chung góc ở

đỉnh A nên các góc ở đáy bằng nhau: ãABC= ãADE

mà ãABC ADE;ã là 2 góc đồng vị ⇒ DE // BC

b) ∆ABC cân tại A: ãABC= ãACB

MBDã = ãABC (đối đỉnh)

ãNCE= ãACB (đối đỉnh)

MBD NCEã = ã

Xét 2 tam giác vuông ∆DMB và ∆ENC có:

ãMBD NCE= ã (CM trên)

BD = CE (gt)

Nên ∆DMB = ∆ENC (Cạnh huyền- góc nhọn)

⇒ DM = EN (2 cạnh tơng ứng)

c) Xét ∆AMD và ∆ANE có:

AD = AE (CM câu a))

ãADM = ãAEN (Do ∆DMB = ∆ENC: CM câu b))

DM = EN (CM câu b))

Vậy ∆AMD = ∆ANE (c - g - c)

Suy ra: AM = AN Tam giác AMN cân tại A

d) ∆AMD = ∆ANE (CM câu c)) nên HAB KACã = ã

Xét 2 tam giác vuông: HAB và KAC có:

AB = AC (gt)

Nên ∆HAB = ∆KAC (Cạnh huyền- góc nhọn) ⇒ AH =

AK

Mặt khác: Xét 2 tam giác vuông AIH và AIK có:

AI: Cạnh chung

AH = AK (CM trên)

⇒ ∆AHI = ∆AKI (Cạnh huyền- cạnh góc vuông)

Do đó: IAHã =IAKã

Lại có: ãHAB KAC= ã nên ãIAB IAC= ã

Vậy AI là tia phân giác chung của ãBACãMAN

0,5

1

0,5

1 0,25

1 0,5 0,25

1

1 0,5 0,5 0,5

Ngày đăng: 29/08/2017, 21:58

TỪ KHÓA LIÊN QUAN

w