The systemic arterial pressure waveform results from ejection of blood from the left ventricle into the aorta during systole, followed by peripheral arterial runoff of this stroke volu
Trang 1ĐO HA ĐỘNG MẠCH XÂM LẤN
Trang 2Chia thành 3 nhóm chính:
1 Không đo được huyết áp động mạch không xâm lấn
2 Cần theo dõi huyết áp động mạch liên tục:
1 Bệnh lý cần theo dõi huyết động liên tục
2 Phẫu thuật hay thủ thuật trên tim, mạch
3 Lấy máu xét nghiệm liên tục (khí máu)
Chỉ định
Trang 3NIHON
Trang 4 Nối module vào máy Nihon Kohden tại vị trí Press1
Nối module vào máy Spacelabs tại T1-2
Trang 5◦ Pha heparin 1000Ul (0,2ml heparin) vào dung dịch NaCl 0,9% 500ml
◦ Khóa dây dịch truyền,
cắm bầu chứa vào chai
Nacl
Trang 6◦ Xả dịch vào khỏang
1/3bầu
◦ Mở khóa và xả đuổi khí trong hệ thống day, sau đó khóa lại
◦ Đặt chai dịch vào túi áp lực và treo lên giá
Trang 7◦ Nối dây vào dây nối của tranducer
◦ Mở 3 chia
◦ Bóp nhẹ khóa màu xanh để làm dịch chảy qua
tranducer
Trang 8◦ Tiếp tục bóp nút xanh để cho dịch chảy vào hệ thống day nối dài để đuổi khí
◦ Bơm túi tạo áp lực lên mức
300 mmHg, với áp lực trên, tốc độ dịch là 2-4 ml/giờ,
Trang 9◦ Pha 50 ml NS + 0,02 ml
heparin
◦ Gắn vào đầu dưới tranducer
◦ Tăng tốc độ bơm để đuổi khí trong hệ thống dây
◦ Tốc độ duy trì 2ml/giờ
Trang 10◦ Nối dây đo áp lực vào nắp chụp sao cho that khít
◦ Kiểm tra lại tất các
mối nối
Trang 11◦ Di chuyển sao cho đầu thóat khí của 3 chia
ngang với nhĩ phải và mở 3 chia cho tiếp xúc với không khí
Trang 12◦ Điều chỉnh mức 0 trên máy:
Nhấn nut Press all zero ở góc trái trên màn hình
Nhấn menu press å P1scale/zero cal zero calibration
Trang 13• Khóa 3 chia lại
Máy đã sẵn sàng đo áp lực động mạch
Trang 14◦ Điều chỉnh giới hạn báo
Nhấn nut để điều chỉnh
◦ Nhấn home để kết thúc
Trang 15◦ Cài đặt chế độ hiển thị:
Nhấn menu press other setting
Nhấn S/D (M): chọn hiển thị HA tâm thu /tâm
trương và trung bình
Nhấn M: chỉ hiển thị HA trung bình
◦ Nhấn home để kết thúc
Trang 171. Thiếu máu nuôi
2. Huyết khối
3. Chảy máu
4. Nhiễm trùng
5. Tổn thương thần kinh
Trang 18 Dynamic response
Trang 22 frequency at which it oscillates when stimulated
Physiologic peripheral arterial waveforms have a
fundamental frequency of 3 to 5 Hz, although some
components may range up to 20 Hz [46]
Thus, the resonant frequency of the system used to monitor arterial pressure must be greater than 20 Hz to avoid ringing and systolic overshoot [47]
Trang 23 is a measure of how quickly an oscillating system comes to rest [47]
A system with a high damping coefficient (eg, compliant tubing) absorbs mechanical energy well and causes a diminution in the transmitted waveform
Trang 25 Common causes of underdamping include connecting tubing with stopcocks, excessive tubing lengths, and patient factors (eg,
tachycardia, high output states)
A common cause of overdamping is air
bubbles in the connecting tubing
Trang 30 The systemic arterial pressure waveform results from ejection of blood from the left ventricle into the aorta during systole, followed
by peripheral arterial runoff of this stroke volume during diastole (
Fig 40-11 )
The systolic components follow the ECG R wave and consist of a steep pressure upstroke, peak, and decline and correspond to the period of left ventricular systolic ejection
The downslope of the arterial pressure waveform is interrupted by the dicrotic notch, then continues its decline during diastole after the ECG T wave, and reaches its nadir at end-diastole
Trang 31 The dicrotic notch recorded directly from the central aorta
is termed the incisura (from the Latin, “a cutting into”)
The incisura is sharply defined and is undoubtedly related
to closure of the aortic valve [ 61 ]
In contrast, the peripheral arterial waveform generally
displays a later, smoother dicrotic notch that only
approximates the timing of aortic valve closure and
depends more on properties of the arterial wall
Trang 32 Note that the systolic upstroke of the radial artery pressure
trace does not appear for 120 to 180 msec after inscription of the ECG R wave (see Fig 40-11 ) This interval reflects the sum
of times required for spread of electrical depolarization through the ventricular myocardium, isovolumic left ventricular
contraction, opening of the aortic valve, left ventricular ejection, transmission of the aortic pressure wave to the radial artery,
and finally, transmission of the pressure signal from the arterial catheter to the
Trang 36 If the monitoring system has a natural
frequency that is too low, frequencies in the
monitored pressure waveform will overlap the natural frequency of the measurement system
As a result, the system will resonate and
pressure waveforms recorded on the monitor will be exaggerated or amplified versions of
true intra-arterial pressure ( Fig 40-4 ) This
phenomenon is the familiar arterial pressure waveform that displays overshoot, ringing, or resonance In these instances, the recorded
systolic blood pressure overestimates true
intra-arterial pressure
Trang 37 Most catheter-transducer systems are underdamped but have an acceptable natural frequency that exceeds 12 Hz If the system's natural frequency is lower than 7.5 Hz, the pressure waveform is often distorted, and no amount
of damping adjustment can restore the monitored waveform to adequately resemble the original waveform [47] If, on the other hand, the natural
frequency can be increased sufficiently (e.g., 24 Hz), damping will have
minimal effect on the monitored waveform, and faithful reproduction of
intravascular pressure is achieved more easily (Figs 40-6 and 40-7 [ 0060 ] [ 0070 ]) In other words, the lower the natural frequency of the monitoring system, the more narrow the range of damping coefficients that can be
tolerated to ensure faithful reproduction of the pressure wave For example,
if the monitoring system's natural frequency is 10 Hz, the damping
coefficient must be between 0.45 and 0.6 for accurate monitoring of the
pressure waveform If the damping coefficient is too low, the monitoring system will be underdamped, resonate, and display factitiously elevated systolic blood pressure; if the damping coefficient is too high, the system will be overdamped, systolic pressure will be falsely decreased, and fine detail in the pressure trace will be lost
Trang 40 From these considerations it follows that a pressure monitoring system will have optimal dynamic response if its natural frequency is as high as possible [ 51 ] In theory, this is best achieved by using short lengths of stiff pressure tubing and limiting the number of stopcocks and other monitoring system appliances Blood clots and air bubbles trapped and concealed in stopcocks and other connection points will have similar adverse influences on the system's dynamic response
As a general rule, adding air bubbles to monitoring systems will not improve their dynamic response because any increase in system damping is always
accompanied by a decrease in natural frequency
Trang 41 To assess the amount of distortion existing in
a pressure monitoring system, the fast-flush test provides a convenient bedside method for determining the system's dynamic response.
[ 47 ] [ 49 ] [ 51 ] To perform this test, the fast-flush
valve is opened briefly, and the resulting flush artifact is examined Natural frequency is
inversely proportional to the time between
adjacent oscillation peaks It can be calculated
as 1 cycle/1.7 mm × 25 mm/sec = 14.7
cycles/sec (14.7 Hz) ( Fig 40-9 ) Monitoring
systems with shorter oscillation cycles will
have higher natural frequencies
Trang 42 when blood pressure is lower in one arm than in the other or when the pulses are weaker on one side, one should never insert an arterial catheter on the side with the weaker pulse because determination of blood pressure from this site will probably underestimate true aortic pressure In addition to atherosclerosis, other pathologic conditions such as arterial dissection or embolism preclude accurate monitoring of
pressure from the affected sites