Biết các khái niệm: PHÉP TOÁN, BIỂU THỨC SỐ HỌC, HÀM SỐ HỌC CHUẨN, BIỂU THỨC QUAN HỆ VÀ BIỂU THỨC LOGIC Hiểu và viết được lệnh GÁN Viết được các biểu thức số học và logic với các phép
Trang 1Biết các khái niệm: PHÉP TOÁN, BIỂU
THỨC SỐ HỌC, HÀM SỐ HỌC CHUẨN, BIỂU THỨC QUAN HỆ VÀ BIỂU THỨC LOGIC
Hiểu và viết được lệnh GÁN
Viết được các biểu thức số học và logic với các phép toán thông dụng
§6 PHÉP TOÁN – BIỂU THỨC –
CÂU LỆNH GÁN
Trang 2 1 Phép toán
a) Khái niệm:
- Gồm các phép toán cộng(+), trừ(-), nhân(*), chia(/), chia nguyên (DIV), chia lấy phần dư (MOD)
- Các ký hiệu, thứ tự tính toán trong TP cũng gần giống như trong toán học
- Kiểu của kết quả các phép toán số học phụ thuộc vào kiểu của các toán hạng
- Kiểu của kết quả phép toán quan hệ là kiểu logic
Trang 3PHÉP TOÁN TRONG TOÁN HỌC TRONG TP
Số học với
số nguyên
+ ; - ; x ; DIV ; MOD
+ ; - ; * , DIV, MOD
Số học với
số thực +; - ; x ; : +; - ; * ; /
Các phép
toán quan
hệ <; <=, > ; >=; =; <>
<; <=, > ;
>=; =; <>
Các phép
toán logic Phủ định, hoặc, và NOT, OR, AND
b) Ký hiệu các phép toán:
Trang 4 2 Biểu thức số học
a) Khái niệm:
Biểu thức số học trong TP có thể chứa :
+ Biến kiểu số
+ Hằng số
+ Các hàm
+ Các biến kiểu số và hằng hoặc các hàm liên kết nhau bởi một số hữu hạn các phép toán số học, các dấu ngoặc tròn
Trang 5 b) Quy cách viết:
Chỉ dùng dấu ngoặc tròn để xác định trình tự thực hiện phép toán.
Viết và tính lần lượt từ trái sang
phải.
Sử dụng dấu * thay cho dấu x
Sử dụng dấu / thay cho dấu :
+ Các phép toán trong ngoặc
+ Từ trái sang phải, theo thứ tự: *, /, DIV, MOD rồi đến +,
Trang 6- Ex
x*y/z
a*x*x+b*x+c
(x+y)/(x-1/2)+(x-z)/(x*y)
SQR((a mod b) Div c)) * SQRT((d DIV e)
Trang 7 3 Hàm số học chuẩn
- Mỗi hàm chuẩn đều có tên riêng (tên chuẩn) ; muốn sử dụng một hàm phải gọi tên hàm cùng với đối số (trong ngoặc tròn)
-Hàm chuẩn cũng là một biểu thức số học và có thể tham gia vào
1 biểu thức số học như một toán hạng.
Trang 8HÀM KÝ HIỆU KIỂU ĐỐI SỐ KIỂU KẾT QUẢ
Bình phương SQR(x) Thực – nguyên của đối sốTheo kiểu Căn bậc 2 SQRT(x) Thực – nguyên Thực
Giá trị tuyệt đối ABS(x) Thực - nguyên của đối sốTheo kiểu Logarit tự nhiên ln(x) thực thực
Lũy thừa cơ số e Exp(x) thực thực
Sin, cos sin(x) ; cos (x) thực thực
b) Các hàm số học chuẩn:
Trang 9 Ex
Biểu thức trong toán học:
Biểu thức trong Pascal sẽ là:
(-b+SQRT(SQR(b)-4*a*c))/(2*a)
Biểu thức trong toán học:
(a+sin(x))/(((SQRT(SQR(a))+SQR(x)+1)
2
( b b 4 ) / 2 ac a
2 2
( a sin( )) /( x a x 1)
Trang 10 4 Biểu thức quan hệ
Là 2 biểu thức cùng kiểu liên hệ với nhau bởi phép toán quan hệ
Bthức1 và bthức2 là những bthức kiểu chuỗi hoặc cùng là bthức số học
Trang 11 Ex
3>7
DbA>=DbB
X<=8
i+1 <> x-j+5
SQR(x-a) + SQR(y-b) <= SQR(R)
Trang 12 5 Biểu thức logic
a) Khái niệm:
-Bthức logic đơn giản là các biến hoặc hằng logic
-Bthức logic có thể là:
+Bthức logic đơn giản
+các biểu thức quan hệ liên kết nhau bởi các phép toán logic
-Giá trị của 1 Bthức logic là TRUE hoặc FALSE
Trang 13 b) Ex:
Ex1:
NOT (x<1) x không nhỏ hơn 1
x>=1
Ex2:
+ Trong toán học: 5 x 11
+ Trong TP : (5<=x) AND (x<=11)
Ex3:
(M mod 3 = 0) And (N mod 3 = 0) OR (M mod 3 <>0) and (N mod 3 <>0)
Trang 14 5 Câu lệnh gán:
- Lệnh cơ bản có trong mọi NNLT, nhằm gán 1 giá trị cho một biến.
- Tính giá trị của bthức và gán cho trị của biến
- Kiểu của biến phải phù hợp với kiểu của giá trị biểu thức
Trang 15 b) Ex:
Delta:=SQR(b)-4*a*c
X1:= ((-b)+SQRT(Delta))/(2*a)
S:=Pi*R*R
i:=i+1
T:=t-1
Trang 16Các bt 2.10; 2.11; 2.12; 2.13; 2.17
Ở SBT (sách bài tập) trang 10,11