Tính khoảng cách giữa hai đường thẳng chéo nhau BI và SC.. Tính khoảng cách giữa 2 đường thẳng AM và CC’.. Cho lăng trụ tam giác ABCA1B1C1 có tất cả các cạnh bằng a, góc giữa cạnh bên AA
Trang 1Khóa học Luyện thi Quốc gia PEN-C: Môn Toán (Thầy Lê Bá Trần Phương) Hình học không gian
Hocmai.vn– Ngôi trường chung của học trò Việt Tổng đài tư vấn: 1900 58-58-12 - Trang | 1 -
Các bài được tô màu đỏ là các bài tập ở mức độ nâng cao
Bài 1 Cho hình chóp S.ABCD, đáy ABCD là hình thang nội tiếp trong đường tròn đường kính AD,
AD//BC, AD=2a, AB=BC=CD=a, SA(ABCD), d(A,(SCD)) = a 2, I là trung điểm AD Tính khoảng cách giữa hai đường thẳng chéo nhau BI và SC
Bài 2 Cho tứ diện OABC có OA, OB, OC đôi một vuông góc, OA=a, OB=2a, OC=3a M là trung điểm
OB Tính d(AM, OC)
120
ACB
và (ABB’A’) bằng 300 M là trung điểm của BB’ Tính khoảng cách giữa 2 đường thẳng AM và CC’
Bài 4 Cho lăng trụ tam giác ABCA1B1C1 có tất cả các cạnh bằng a, góc giữa cạnh bên AA1 và mặt đáy bằng 300 Hình chiếu H của A trên (A1B1C1) thuộc B1C1 Tính khoảng cách giữa hai đường thẳng AA1 và
B1C1
600 Tính khoảng cách giữa hai đường thẳng AB và SC theo a
M, N lần lượt là trung điểm của AA’, BB’ Tính d(B’M, CN)
Bài 7 Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, AB = a Tam giác SAC cân tại S và thuộc
mặt phẳng vuông góc với mp(ABC) Gọi M, N lần lượt là trung điểm của SA, BC; biết góc giữa MN với
mp(ABC) bằng 60 Tính khoảng cách giữa hai đường thẳng AC, MN theo a 0
MỘT SỐ BÀI TẬP TỰ GIẢI CÓ ĐÁP ÁN
Bài 1 Cho hình chóp tam giác SABC có đáy là tam giác đều cạnh 7a, SC vuông góc với mặt phẳng
(ABC) và SC = 7a Tìm khoảng cách giữa hai đường thẳng SA và BC
Bài 2 Trong mặt phẳng (P) cho hình thoi ABCD có tâm là O và cạnh a; OB = 3
3
a Trên đường thẳng vuông góc với mặt phẳng (ABCD) tại O lấy điểm S sao cho SB = a Tìm khoảng cách giữa SA và BD
Bài 3 Cho hình lập phương ABCD A’B’C’D’ có cạnh bằng a Gọi K là trung điểm của DD’ Tìm khoảng
cách giữa CK và A’D
CÁC VẤN ĐỀ VỀ KHOẢNG CÁCH (PHẦN 09)
BÀI TẬP TỰ LUYỆN
Giáo viên: LÊ BÁ TRẦN PHƯƠNG
Các bài tập trong tài liệu này được biên soạn kèm theo bài giảng Các vấn đề về khoảng cách (Phần 09) thuộc khóa
học Luyện thi Quốc gia PEN-C: Môn Toán (Thầy Lê Bá Trần Phương) tại website Hocmai.vn Để sử dụng hiệu quả,
Bạn cần học trước Bài giảng sau đó làm đầy đủ các bài tập trong tài liệu này
(Tài liệu dùng chung p5+p6+p7+p8+p9)
Trang 2Khóa học Luyện thi Quốc gia PEN-C: Môn Toán (Thầy Lê Bá Trần Phương) Hình học không gian
Hocmai.vn– Ngôi trường chung của học trò Việt Tổng đài tư vấn: 1900 58-58-12 - Trang | 2 -
Bài 4 Cho hình chóp SABCD có đáy là hình vuông cạnh a, có SA = h và vuông góc với đáy (ABCD)
Dựng và tính độ dài đoạn vuông góc chung của
1 SB và CD
2 SC và BD
Bài 5 Cho hình lập phương ABCDA’B’C’D’ có cạnh bằng 1 Gọi M, N lần lượt là trung điểm của AB,
CD Tìm khoảng cách giữa A’C’ và MN
Bài 6 Cho hình chóp tứ giác SABCD có đáy là hình thoi, cạnh AB = 5, đường chéo AC = 4; SO =
2 2 và vuông góc với đáy tại điểm O là tâm của đáy ABCD Gọi M là trung điểm của SC Tìm khoáng cách giữa SA và BM
Giáo viên: Lê Bá Trần Phương Nguồn : Hocmai.vn