1. Trang chủ
  2. » Giáo án - Bài giảng

đề thi toán 2001 2002

1 235 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 34 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

b/ Chứng minh rằng với mọi giá trị của m, n thì phơng trình 1 luôn có nghiệm.. Trên đờng tròn tâm O lấy một điểm D sao cho D và A nằm về hai phía so với đờng thẳng BC và BD > DC.. Gọi E

Trang 1

UBND

Sở Giáo dục và đào tạo

Đề chính thức

Đề thi tuyển sinh vào lớp 10 THPT

Năm học 2000 - 2001 Môn thi : Toán - Đề 2

Thời gian : 120 phút (Không kể thời gian giao đề)

Ngày thi: 13 - 07 - 2000

Bài 1 (2 điểm) Cho biểu thức :

( ) (2 )2

A

+ + với a≥0

( )2

1

B

b

=

− với b≥0,b≠1

a/ Rút gọn biểu thức A và B

b/ Tính số trị của hiệu A - B, khi a= − 6 2 5,b= + 6 2 5

Bài 2 (2 điểm) Cho phơng trình bậc hai ẩn x (m, n là các tham số) :

2 ( ) ( 2 2 ) 0

x + m n x+ − m +n = (1) a/ Giải phơng trình (1) khi m = n = 1

b/ Chứng minh rằng với mọi giá trị của m, n thì phơng trình (1) luôn có nghiệm c/ Tìm m, n để phơng trình (1) tơng đơng với phơng trình 2

5 0

Bài 3 (2 điểm)

Trong một kì thi hai trờng A và B có tổng cộng 350 học sinh dự thi, kết quả là hai tr-ờng đó có tổng cộng 338 học sinh trúng tuyển Tính ra thì trtr-ờng A có 97% và trtr-ờng

B có 96% số học sinh dự thi trúng tuyển Hỏi mỗi trờng có bao nhiêu học sinh dự thi

?

Bài 4 (4 điểm)

Cho tam giác ABC vuông tại A có góc C = 300, nội tiếp trong đờng tròn tâm O bán kính R = 2cm Trên đờng tròn tâm O lấy một điểm D sao cho D và A nằm về hai phía so với đờng thẳng BC và BD > DC Gọi E và F theo thứ tự là chân các đờng vuông góc hạ từ B và C tới đờng thẳng AD, còn I và K theo thứ tự là chân các đờng vuông góc hạ từ A và D tới đờng thẳng BC

a/ Chứng minh các tứ giác ABIE, CDFK, EKFI là những tứ giác nội tiếp

b/ Chứng minh EK // AC và AE = DF

c/ Khi AD là đờng kính của đờng tròn tâm O, hãy tính chu đờng tròn ngoại tiếp tứ giác EKFI

-Hết -(Đề này gồm có 01 trang)

Họ và tên thí sinh : Số báo danh:

Ngày đăng: 09/11/2015, 15:33

TỪ KHÓA LIÊN QUAN

w