1. Trang chủ
  2. » Đề thi

ĐỀ THI TOÁN VÀO LỚP 10 THPT CHUYÊN TỈNH QUẢNG NINH 2012-2013

1 903 3

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 234,24 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Rút gọn biểu thức A.. ðường thẳng BD cắt hai ñoạn thẳng AE và AF lần lượt tại M và N.. ðường thẳng ñi qua A và giao ñiểm của EN, MF cắt EF tại H.. a Chứng minh AH vuông góc với EF.. b C

Trang 1

SỞ GIÁO DỤC VÀ ðÀO TẠO

QUẢNG NINH -

KỲ THI TUYỂN SINH LỚP 10 TRƯỜNG THPT CHUYÊN HẠ LONG

NĂM HỌC 2012 -2013

ðỀ THI CHÍNH THỨC MÔN: TOÁN (Dành cho học sinh chuyên Toán, chuyên Tin)

Ngày thi: 29/6/2012

Chữ ký giám thị 1

Thời gian làm bài: 150 phút

(không kể thời gian giao ñề)

Chữ ký giám thị 2

(ðề thi này có 01 trang)

Câu 1 (1,5 ñiểm)

a 1 a 1 a a a a 1

1 Rút gọn biểu thức A

2 Tính giá trị của A khi a = 2013 2 2012+

Câu 2 (2,5 ñiểm)

1 Giải hệ phương trình : x(1 y)2 5 2y

x y 4 xy

= −

2 Giải phương trình : 4x2 +3x+ =3 4x x+ +3 2 2x− 1

Câu 3 (1,5 ñiểm)

Tìm m ñể phương trình : x2 −(m+2)x+m2+ =1 0 có các nghiệm x1 , x2 thoả mãn

hệ thức : x12 +2x22 =3x x1 2

Câu 4 (3,5 ñiểm)

Cho hình vuông ABCD cạnh a, trên cạnh BC, CD lấy hai ñiểm E, F thay ñổi sao cho

0

EAF = 45 (E thuộc BC, F thuộc CD, E khác B và C) ðường thẳng BD cắt hai ñoạn thẳng

AE và AF lần lượt tại M và N ðường thẳng ñi qua A và giao ñiểm của EN, MF cắt EF tại H

a) Chứng minh AH vuông góc với EF

b) Chứng minh EF luôn tiếp xúc với một ñường tròn cố ñịnh

c) Tìm vị trí của E, F ñể diện tích tam giác EFC ñạt giá trị lớn nhất

Câu 5 (1,0 ñiểm)

Cho hai số thực dương x, y thỏa mãn: x + y = 5

Tìm giá trị nhỏ nhất của biểu thức:P = 4x + y 2x y

- Hết -

(Cán bộ coi thi không giải thích gì thêm)

Họ và tên thí sinh ……… ………….………SBD ………

Ngày đăng: 27/07/2015, 21:52

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w